首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium oncentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.  相似文献   

2.
Rainbow trout were captured by angling from a run of spawning fish on the Tongariro River in northern New Zealand, to examine the effects of catch and release angling on stress and reproductive parameters. Fish were blood sampled immediately after capture at playing times of <5 or 15 min, or after 1 or 24 h of recovery in stream enclosures. Plasma samples were assayed for cortisol (F), lactate, testosterone (T), 17β-oestradiol (E2), and 17a,20β-dihydroxy-4-pregnen-3-one (17,20βP). Plasma F levels were similar to those of hatchery stocks of rainbow trout, at capture, and became significantly elevated 1 h after capture. Plasma F was still clevated in some fish 24 h after capture. Plasma lactate levels began to increase 15 min after capture, were further elevated 1 h after capture, and had returned to normal 24 h after capture. We proposed that metabolic recovery had occurred but that some animals were still experiencing some degree of stress, possibly in response to holding conditions in the river. Both plasma T and E2 were depressed 24 h after capture, whereas there was no change in plasma 17,20βP. This is consistent with other findings showing that acute stress is associated with depression of plasma levels of T and E2. There was no mortality as a result of capture or any of the handling protocols. We conclude that catch and release angling will result in negligible mortality, but may have an inhibitory effect on some reproductive processes.  相似文献   

3.
To date, most studies of commercial fisheries bycatch have focused on mortality at time of capture as an endpoint. However, sub-lethal indicators of organismal condition have the potential to reveal mechanisms associated with mortality (both at time of capture and post-release) and opportunities for improving fish welfare. In this study, we simulated commercial fishing efforts in inland lakes with fyke nets during a typical fishing season (early April to late June) in southeastern Ontario, Canada, where bycatch of non-target fish species had previously been documented. Using non-target gamefish (i.e., largemouth bass [Micropterus salmoides, Lacépède], northern pike [Esox Lucius, L.]), as well as a target species (i.e., bluegill [Lepomis macrochirus, Rafinesque]), we examined the sub-lethal consequences of capture (e.g., blood physiology, reflex impairment, and injury) and compared the effects of being retained in the net for two different durations (i.e., two or six days) over a range of water temperatures (i.e., 3–28 °C). Sub-lethal physiological disturbances (i.e., blood glucose and lactate) in largemouth bass and bluegill tended to be greater at higher water temperatures. However, fish retained for six days generally did not exhibit greater stress than those retained for two days, with the exception of plasma glucose in largemouth bass. Reflex impairment was similar among temperature and retention periods. Fish retained in nets experienced a range of injuries (including fin frays, scale loss, and mouth damage) that had the potential to facilitate the development of opportunistic pathogenic infections. Greater incidences of injury on fish bycatch tended to be associated with higher temperatures and longer retention. To reduce physiological disturbances and injury that could lead to delayed mortality, we suggest that regulations for inland commercial fishers require them to check their nets more frequently as water temperatures increase. We suggest that future studies of bycatch incorporate sub-lethal endpoints given that they serve as an objective measure of fish welfare and can provide quantitative mechanistic information to support management actions.  相似文献   

4.
After capture by trawling, the blood parameters of plaice (Pleuronectes platessa L.) are perturbed for up to 5 days post-capture. Whole blood values recovered from an initial stress-induced haemoconcentration within 12 hr. There is a marked hyperglycaemia following capture: blood glucose concentration increased four-fold to 87.92 +/- 10.41 mg/100 ml (N = 6) after 12 hr and remained elevated for 3-4 days before returning to normal values. Monovalent blood electrolytes (Na+, K+, Cl-) significantly increased during the initial stages post-capture (4-10 hr) but then recovered. The divalent cations (Ca2+, Mg2+) similarly increased but for a longer period (24-72 hr). Liver and muscle glycogen concentrations were very variable during the recovery period. All blood parameters achieved stable values within 5 days of capture. This study provides comprehensive haematological data on post-trawl recovery and tank-acclimation in plaice, for up to 28 days following capture.  相似文献   

5.
Using triploidy as an experimental model, we examined whether cell size limits the post-exercise recovery process in fish. Because triploids generally possess larger cells, which could affect many physiological and biochemical processes, we hypothesized that triploids would take longer to recover from exhaustive exercise compared to diploids. To test this, we measured plasma lactate, glucose and osmolality, and white muscle energy stores (glycogen, phosphocreatine and ATP) and lactate before and immediately following exhaustive exercise and during recovery at 2 and 4 h post-exercise. In addition, oxygen consumption and ammonia excretion rates were determined before and after exhaustive exercise. Overall, diploid and triploid brook trout showed similar metabolic responses exercise, but plasma osmolality, white muscle lactate, white muscle ATP and post-exercise oxygen consumption rates recovered earlier in triploids compared to diploids. The results of this study suggest that the characteristic larger cell size of triploidy does not limit the physiological response to, or recovery from, exhaustive exercise.  相似文献   

6.
Fishing is the major threat to marine fish populations, particularly to higher trophic-level predators such as sharks. Many sharks, and other fish, are caught as commercial by-catch or for recreational purposes and then released; therefore, it is important to understand the effects of capture stress on their physiology and subsequent survival. Nonetheless, although important data have been collected for some sharks, there can be substantial interspecific differences, and the consequences of capture stress are still poorly understood for most species. In this study, the authors quantified the physiological effect of capture on four catshark species endemic to Southern Africa, which are regularly discarded as by-catch and targeted by recreational fisheries. Fifteen pyjama sharks, nine leopard sharks and nine shysharks were captured, and a blood sample was collected to measure their physiological response to capture stress. Stressed blood biochemistry was compared to samples obtained after the sharks recovered for 24 h in an underwater pen. Levels of pH and K+ were significantly lower, and lactate levels were significantly higher, in sharks immediately after capture stress compared to after the 24 h recovery period. Although the species showed a similar response to capture stress, they differed significantly in pH, K+ and lactate levels, and there was some evidence of size affecting the strength of the response to capture stress. The substantial physiological response elicited by even the relatively quick capture event in this study suggests that common fishing practices will have a stronger impact on catshark homeostasis because of longer hooking times and more disruptive fishing gear. Although the relationship between survival and physiological changes elicited by capture needs further investigation, the results provide further evidence that minimizing stress would be beneficial to maximize the survival of sharks and other fish following capture-and-release fishing practices.  相似文献   

7.
This study was intended to discover whether forcing largemouth bass (Micropterus salmoides) to swim at 0.5 body lengths/second following exercise would expedite recovery relative to fish recovered in static water. Exercise resulted in a suite of physiological disturbances for largemouth bass that included a depletion of anaerobic energy stores, an accumulation of lactate, and increased cardiac output. At 1 h following exercise, exhaustively exercised largemouth bass forced to swim exhibited expedited recovery relative to fish in static water, evidenced by lower concentrations of lactate in white muscle, elevated concentrations of phosphocreatine in white muscle, and reduced concentrations of glucose in plasma. By 4 h postexercise, largemouth bass forced to swim during recovery exhibited signs of physiological disturbance that were absent in fish recovered in static water. These signs of disturbance included a loss of osmotically active particles from plasma, elevated lactate in plasma, reductions of phospocreatine in white muscle, and increased cardiac output. These results are discussed in relation to the body of work with salmonid fishes showing physiological benefits to recovering fish in flowing water.  相似文献   

8.
The mortality and stress responses (plasma cortisol concentration) of undersized (total length, L T, <370 mm) pike-perch Sander lucioperca caught as by-catch in a trawl fishery were assessed. The effects of three different holding methods on pike-perch caught by trawl were compared: (1) fish that were transferred to ambient-temperature water (15·0–21·4° C) immediately after capture and not exposed to chilling water, (2) fish held in chilling water for 10 min and (3) fish exposed to chilling water for 2 h. The sample fish were held and monitored in individual plastic restrainers at ambient-water temperature for 48 h after each of the handling procedures. Total mortality was similar for fish held in chilling tanks for 10 min (27·2% total mortality) compared to fish that were only held in ambient-temperature water (28·2% mortality). Total mortality reached 91·3% when fish were held in chilled water for 2 h. Mortality and plasma cortisol concentrations correlated inversely with size (96–368 mm L T) and directly with lake-water temperature (15·0–21·4° C) after treatment. In addition, the effect of chilling was observed in elevated cortisol concentration and delayed start of recovery. The results show that quickly removing (<10 min) undersized pike-perch from chilled water could markedly improve the survival of released fish. Due to delayed recovery, however, fish should be allowed to recover (30–40 min) in a deck tank before release.  相似文献   

9.
The impact of variation in water temperature and dissolved oxygen on recovery of largemouth bass Micropterus salmoides from exercise was examined. For this, largemouth bass were first exercised and recovered for either 1, 2 or 4 h at ambient water temperatures (25° C) in fully oxygenated water. Results showed that exercise forced fish to utilize anaerobic metabolism to meet energy demands, and resulted in reductions in anaerobic energy stores adenosine triphosphate (ATP), Phosphocreatine (PCr) and glycogen. Exercise also resulted in a seven‐fold increase in lactate within white muscle. After 2 h of recovery in oxygenated water at acclimation temperature, physiological recovery from exercise was under way, and by 4 h most variables examined had returned to control levels. Next, largemouth bass were exercised at ambient temperatures and recovered for 2 h in environments with either elevated temperature (32° C), reduced temperature (14 and 20° C), hypoxia or hyperoxia. Both elevated and reduced temperature impaired recovery of tissue lactate and tissue ATP relative to fish recovered in water at acclimation temperature, while hyperoxic water impaired recovery of tissue ATP. Moderately hypoxic waters impaired the recovery of plasma glucose, plasma lactate and tissue PCr relative to fish recovered in fully oxygenated water. Results from this study are discussed in the context of critical oxygen and temperature guidelines for largemouth bass. In addition, several recommendations are made concerning remedial treatments used in livewells (tanks) during angling tournaments when fish are recovering from exercise associated with angling.  相似文献   

10.
Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1)) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1) kg(-1). Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time.  相似文献   

11.
Ultrasonic telemetry was used to compare post‐release survival and movements of Atlantic sharpnose sharks Rhizoprionodon terraenovae in a coastal area of the north‐east Gulf of Mexico. Ten fish were caught with standardized hook‐and‐line gear during June to October 1999. Atlantic sharpnose sharks were continuously tracked after release for periods of 0·75 to 5·90 h and their positions recorded at a median interval of 9 min. Individual rate of movement was the mean of all distance and time measurements for each fish. Mean ± s.e . individual rate of movement was 0·45 ± 0·06 total lengths per second (LT s?1) and ranged from 0·28 to 0·92 LT s?1 over all fish. Movement patterns did not differ between jaw and internally hooked Atlantic sharpnose sharks. Individual rate of movement was inversely correlated with bottom water temperature at capture (r2 = 0·52, P ≤ 0·05). No consistent direction in movement was detected for Atlantic sharpnose sharks after release, except that they avoided movement towards shallower areas. Capture‐release survival was high (90%), with only one fish not surviving, i.e. this particular fish stopped movement for a period of 10 min. Total rate of movement was total distance over total time (m min?1) for each Atlantic sharpnose shark. Mean total rate of movement was significantly higher immediately after release at 21·5 m min?1 over the first 1·5 h of tracking, then decreased to 11·2 m min?1 over 1·5–6 h, and 7·7 m min?1 over 3–6 h (P ≤ 0·002), which suggested initial post‐release stress but quick recovery from capture. Thus, high survival (90%) and quick recovery indicate that the practice of catch‐and‐release would be a viable method to reduce capture mortality for R. terraenovae.  相似文献   

12.
Three experiments were done with sand whiting Sillago ciliata: the first two assessed the short‐term mortality and physiological response of individuals after being mouth hooked and then subjected to rapid changes in salinity, while the third experiment investigated their longer‐term fate after ingesting hooks (independent of salinity changes). In experiment one, 48 tanks containing a single S. ciliata were randomly assigned as either one of three treatments or a control. The fish in treatments one and two were exposed to salinity changes during their angling and subsequent release while those in treatment three were only subjected to angling and air exposure. Control fish remained untouched. Fish were then monitored for up to 6 days for mortalities before blood samples were taken to determine concentrations of plasma cortisol and glucose. Blood samples were also taken from five wild‐caught fish to provide baseline estimates of the above variables. None of the treatment or control fish died over the 6 days, and there were no significant differences in blood cortisol or glucose between treatment, control and wild fish. In experiment two, 102 S. ciliata and 52 experimental tanks were used. The treatments were repeated as above, however, six individuals from each treatment and control group were removed and sampled for blood (and then glucose and cortisol) at 0, 24, 48 and 72 h post release. Some changes in behaviour due to the salinity changes occurred as well as a significant main effect of time for cortisol, with all fish having significantly elevated acute stress at the first sample time. In experiment three, 52 S. ciliata were placed into individual tanks. Twenty‐six of these fish were allowed to ingest baited J‐hooks, played for 60 s, removed from their tanks, and then released after their lines were cut (50 mm from their mouths). Control fish were not touched. All fish were then monitored over 21 days. Six of the treatment fish died (between 3 h and 14 days), while the remaining hooked fish resumed feeding within 5 days and 25% ejected their hooks (between 1 and 19 days). It was concluded that (1) salinity and mouth hooking had few independent or interactive effects on the mortality or physiological response of angled‐and‐released S. ciliata and (2) while hook ingestion caused some mortalities, the protracted physiological effects were limited, with all surviving fish resuming feeding and some eventually ejecting their hooks.  相似文献   

13.
Many sharks are captured as untargeted by-catch during commercial fishing operations and are subsequently discarded. A reliable assessment of the proportion of discarded sharks that die post-release as a result of excessive physiological stress is important for fisheries management and conservation purposes, but a reliable physiological predictor of post-release mortality has not been identified. To investigate effects of gill-net capture on the acid-base balance of sharks, we exposed gummy sharks, Mustelus antarcticus, to 60 min of gill-net capture in a controlled setting, and obtained multiple blood and muscle tissue samples during a 72-h recovery period following the capture event. Overall mortality of gummy sharks was low (9%). Blood pH was significantly depressed immediately after the capture event due to a combination of respiratory and metabolic acidosis. Maximum concentrations of plasma lactate (9.9 ± 1.5 mmol L(-1)) were measured 3h after the capture event. Maximum intramuscular lactate concentrations (37.0 ± 4.6 μmol g(-1)) were measured immediately after the capture event, and intramuscular lactate concentrations were substantially higher than plasma lactate concentrations at all times. Sharks in poor condition had low blood pH and high intramuscular lactate concentration, but blood pH does not appear to be a reliable predictor of survival. Suitability of intramuscular lactate concentration as predictor of delayed mortality deserves further investigation.  相似文献   

14.
Endocrine, metabolic and osmoregulatory changes in Pacific halibut upon capture and at intervals following a 30‐min air exposure were measured. Concentrations of cortisol, sodium, and chloride in plasma and serum peaked two hours after the stressor. Thirty minutes after a 30‐min air exposure concentrations of glucose in plasma had increased significantly from levels obtained immediately after the stressor and remained elevated for up to 4 h. Plasma lactate was also elevated 30 min after the stress treatment and lactate concentrations increased significantly at each subsequent sampling interval, 2 and 4 h. There was a significant linear increase in plasma lactate for fish sampled from 1.5 to 6.5 h after capture. Incidence of delayed mortality was low; of 22 experimentally stressed animals only one died over a 10‐day monitoring period. These data illustrate the difficulties in using single time‐point plasma indices of stress to assess condition of animals after capture since the time‐course of physiological changes associated with the stress response vary with parameter measured and may take hours to be fully expressed.  相似文献   

15.
The effects of hypoxia (0.4 mg O2/L) for 2, 6 or 10 h and subsequent normoxic recovery on the levels of lipid peroxides, thiobarbituric acid reactive substances, protein carbonyls (CP), free thiols, and the activities of six antioxidant and associated enzymes were measured in the brain, liver, and skeletal muscle of the rotan Perccottus glenii. Hypoxia increased CP content in the brain (5.0–7.4-fold), liver (2.2–3.3-fold) and muscle (3.2–61-fold) relative to controls and the levels remained elevated during recovery. Lipid peroxide content rose within 2 h of hypoxia in all tissues examined with the most marked increase (8.7-fold) in the liver, but decreased again during longer hypoxic exposure except in the muscle. Levels of low-molecular mass thiols were transiently lowered after 2 h hypoxia in all tissues, but were higher compared with controls after longer hypoxic exposure and recovery. Hypoxia decreased protein thiol content in the liver and muscle that return to control levels during recovery. Experimental conditions affected enzyme activities in a different manner. Superoxide dismutase activity rose two-fold in the liver of hypoxic fish, and a similar tendency was seen in muscle glutathione-S-transferase. Activities of other enzymes were decreased or unchanged during hypoxia and elevated in some cases during normoxic recovery. Taken together, these data show that hypoxia resulted in the development of oxidative stress and a compensatory changes of antioxidant enzymes in the tissues.  相似文献   

16.
1. Temperature governs most physiological processes in animals. Ectotherms behaviourally thermoregulate by selecting habitats with temperatures regulating their body temperature for optimal physiological functioning. However, ectotherms can experience temperature extremes forcing the organisms to seek temperature refuge. 2. Fish actively avoid potentially lethal temperatures by moving to cool-water sites created by inflowing tributaries and groundwater seeps. Juvenile Atlantic salmon (Salmo salar) of different age classes exhibit different behavioural responses to elevated temperatures (>23 °C). Yearling (1+) and 2-year-old (2+) Atlantic salmon often cease feeding, abandon territorial behaviour and swim continuously in aggregations in cool-water sites; whereas young-of-the-year (0+) fish continue defending territories and foraging. 3. This study determined whether the behavioural shift in older individuals (2+) occurred when basal metabolic rate, driven by increasing water temperature, reached the maximum metabolic rate such that anaerobic pathways were recruited to provide energy to support vital processes. Behaviour (feeding and stress responses), oxygen consumption, muscle lactate and glycogen, and circulating blood lactate and glucose concentrations were measured in wild 0+ and 2+ Atlantic salmon acclimated to water temperatures between 16 and 28 °C. 4. Results indicate that oxygen consumption of the 2+ fish increased with temperature and reached a plateau at 24 °C, a temperature that corresponded to cessation of feeding and a significant increase in muscle and blood lactate levels. By contrast, oxygen consumption in 0+ fish did not reach a plateau, feeding continued and muscle lactate did not increase, even at the highest temperatures tested (28 °C). 5. To conclude, the experiment demonstrated that the 0+ and 2+ fish had different physiological responses to the elevated water temperatures. The results suggest that wild 2+ Atlantic salmon employ behavioural responses (e.g. movement to cool-water sites) at elevated temperatures in an effort to mitigate physiological imbalances associated with an inability to support basal metabolism through aerobic metabolic processes.  相似文献   

17.
The present study was conducted to extend the understanding of the combined physiological effects of different food rations in combination with sublethal levels of copper in common carp (Cyprinus carpio). Fish acclimated to low (0.5% body weight) and high (5% body weight) food rations were exposed to 1 microM copper for a period of 28 days and kept for a further 14 days in copper free water to examine their recovery. Measurements of oxygen consumption, ammonia excretion and ammonia accumulation in plasma and muscle were done at various time intervals during the experimental period. Overall, oxygen consumption and ammonia excretion rates were significantly affected by food ration in both copper free and copper exposed fish. Additional challenges, such as copper exposure and/or exercise, significantly increased plasma and muscle ammonia in the fish fed a high food ration. Muscle ammonia levels in general responded slower (first increase after 72 h) and recovered within 2 weeks of exposure. There was a significant correlation between plasma ammonia levels, muscle ammonia levels and ammonia excretion rates. Influence of copper in terms of ammonia excretion and plasma ammonia accumulation was observed in high ration fish but low ration fish remained unaffected. This clearly indicates that ammonia metabolism was significantly influenced by copper in this group of fish showing that during unfavourable environmental conditions a high amount of food supply may turn deleterious to fish.  相似文献   

18.
Abstract Baited and unbaited hoop-nets commonly are used to capture catfish in lotic and lentic systems. Turtle bycatch and post-capture mortality has been problematic during catfish surveys in Missouri, USA, most recently in the Gasconade River, Gasconade and Osage counties. We evaluated 3 modified hoop-net designs that would reduce turtle bycatch without reducing catfish capture in the Gasconade River during 15 May-15 July 2006 after pilot study evaluation of 5 hoop-net designs in April 2006. We deployed modified and control-nets in blocks for 48 hours to evaluate differences in turtle and catfish catch rate, as well as abundance, size, and mortality rate of turtle bycatch. The chimney design reduced turtle bycatch by 84% when compared to the control, without decreasing the number or average size of captured flathead catfish (Pylodictis olivaris). Environmental conditions that affected turtle mortality included Secchi disc transparency, temperature, dissolved oxygen, and stream river depth. This is the first known attempt to create turtle exclusion or escapement devices for hoop-nets deployed in freshwater systems. Biologists using hoop-nets to sample aquatic vertebrates in moderate to large river systems will benefit from our study. The application of this methodology will reduce turtle bycatch mortality, especially when sampling is conducted in high water temperatures.  相似文献   

19.
Clove oil can be used as an anaesthetic in the handling of marine and freshwater fish. Few studies report on its use for periods up to 48 h, for example, under long‐distance transport conditions. This study tested the effect of different clove oil concentrations for 1–48 h on recovery and survival of the cichlid Haplochromis obliquidens, an ornamental fish species endemic to Lake Victoria. Haplochromis obliquidens were anaesthetized for 1 h using 5–25 μl L?1 clove oil. There was no correlation between clove oil concentration and post‐anaesthesia recovery time (P = 0.15). On average, fish recovered within 9.5 ± 2 min, and no fish died within 24 h after recovery. Results from exposure of fish to 18–20 μl L?1 clove oil for up to 48 h suggested a narrow margin of safety as this concentration range induced mortality. At 18 μl L?1 recovery times ranged from 3 to 43 min between 24 and 36 h exposure, while fish exposed longer than 36 h recovered within 1–10 min, or within 1–2 min after 44–48 h. At the end of a 48‐h transport experiment total ammonia levels were higher in transport water containing anaesthetized fish than for non‐anaesthetized fish (1.65 ± 0.19 and 0.54 ± 0.08 mg L?1 NH + NH3, respectively). The combined use of clove oil and the selective ammonium ion exchanger zeolite was considered feasible as ammonia levels could be reduced by up to 82% compared to control bags without zeolite.  相似文献   

20.
Reproductively active female red gurnard Chelidonichthys kumu were captured on long-lines, and placed in confinement tanks for 24, 48, 72 and 96 h to examine the effect of capture and confinement on reproductive parameters (experiment I). Plasma cortisol at the time of capture was elevated to levels typical of stressed fish in other species (53–125 ng ml−1). Final plasma cortisol levels in red gurnard confined for any length of time were not significantly different from one another (ranging from 17 to 43 ng ml−1), indicating that fish were chronically stressed when held in captivity for up to 96 h after capture. When initial and final plasma cortisol levels were compared within confinement groups, cortisol decreased significantly after 24 and 96 h of confinement indicating that some acclimation to captivity may have occurred. In contrast, plasma 17β-estradiol (E2) and testosterone (T) levels decreased significantly to levels comparable to those in post-spawned fish, after any period of confinement, and remained low throughout the experiment. Another group of fish was captured and confined in the same manner as experiment I but subjected to repeated blood sampling every 24 h, until 96 h post-capture. In these fish, plasma cortisol levels decreased significantly from 127 ng ml−1 after 24 h confinement and thereafter showed no change (25–45 ng ml−1). Plasma E2 decreased significantly after 72 h of confinement while plasma T showed no change from levels at capture. Increased amounts of follicular atresia were found in vitellogenic oocytes of fish confined for longer periods of time in experiment I, indicating that capture and confinement stress affect reproduction negatively in captive wild fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号