首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The objective was to determine the relationship of muscular and skeletal scores taken on the live animal and carcass conformation and fat scores with carcass composition and value. Bulls (n = 48) and heifers (n = 37) of 0.75 to 1.0 late-maturing breed genotypes slaughtered at 16 and 20 months of age, respectively, were used. At 8 months of age (weaning) and immediately pre-slaughter, visual muscular scores were recorded for each animal and additionally skeletal scores were recorded pre-slaughter. Carcass weight, kidney and channel fat weight, carcass conformation and fat scores, fat depth over the longissimus dorsi muscle at the 12th (bulls) or 10th (heifers) rib and carcass length were recorded post-slaughter. Each carcass was subsequently dissected into meat, fat and bone using a commercial dissection procedure. Muscular scores taken pre-slaughter showed positive correlations with killing-out rate (r ≈ 0.65), carcass meat proportion (r ≈ 0.60), value (r ≈ 0.55) and conformation score (r ≈ 0.70), and negative correlations with carcass bone (r ≈ -0.60) and fat (r ≈ -0.4) proportions. Corresponding correlations with muscular scores at weaning were lower. Correlations of skeletal scores taken pre-slaughter, carcass length and carcass weight with killing-out rate and the various carcass traits were mainly not significant. Carcass fat depth and kidney and channel fat weight were negatively correlated with carcass meat proportion and value, and positively correlated with fat proportion. Correlations of carcass conformation score were positive (r = 0.50 to 0.68) with killing-out rate, carcass meat proportion and carcass value and negative with bone (r ≈ -0.56) and fat (r ≈ -0.40) proportions. Corresponding correlations with carcass fat score were mainly negative except for carcass fat proportion (r ≈ 0.79). A one-unit (scale 1 to 15) increase in carcass conformation score increased carcass meat proportion by 8.9 and 8.1 g/kg, decreased fat proportion by 4.0 and 2.9 g/kg and decreased bone proportion by 4.9 and 5.2 g/kg in bulls and heifers, respectively. Corresponding values per unit increase in carcass fat score were -11.9 and -9.7 g/kg, 12.4 and 9.9 g/kg, and -0.5 and -0.2 g/kg. Carcass conformation and fat scores explained 0.70 and 0.55 of the total variation in meat yield for bulls and heifers, respectively. It is concluded that live animal muscular scores, and carcass conformation and fat scores, are useful indicators of carcass meat proportion and value.  相似文献   

2.
Delivering beef of consistent quality to the consumer is vital for consumer satisfaction and will help to ensure demand and therefore profitability within the beef industry. In Australia, this is being tackled with Meat Standards Australia (MSA), which uses carcass traits and processing factors to deliver an individual eating quality guarantee to the consumer for 135 different ‘cut by cooking methods’ from each carcass. The carcass traits used in the MSA model, such as ossification score, carcass weight and marbling explain the majority of the differences between breeds and sexes. Therefore, it was expected that the model would predict with eating quality of bulls and dairy breeds with good accuracy. In total, 8128 muscle samples from 482 carcasses from France, Poland, Ireland and Northern Ireland were MSA graded at slaughter then evaluated for tenderness, juiciness, flavour liking and overall liking by untrained consumers, according to MSA protocols. The scores were weighted (0.3, 0.1, 0.3, 0.3) and combined to form a global eating quality (meat quality (MQ4)) score. The carcasses were grouped into one of the three breed categories: beef breeds, dairy breeds and crosses. The difference between the actual and the MSA-predicted MQ4 scores were analysed using a linear mixed effects model including fixed effects for carcass hang method, cook type, muscle type, sex, country, breed category and postmortem ageing period, and random terms for animal identification, consumer country and kill group. Bulls had lower MQ4 scores than steers and females and were predicted less accurately by the MSA model. Beef breeds had lower eating quality scores than dairy breeds and crosses for five out of the 16 muscles tested. Beef breeds were also over predicted in comparison with the cross and dairy breeds for six out of the 16 muscles tested. Therefore, even after accounting for differences in carcass traits, bulls still differ in eating quality when compared with females and steers. Breed also influenced eating quality beyond differences in carcass traits. However, in this case, it was only for certain muscles. This should be taken into account when estimating the eating quality of meat. In addition, the coefficients used by the Australian MSA model for some muscles, marbling score and ultimate pH do not exactly reflect the influence of these factors on eating quality in this data set, and if this system was to be applied to Europe then the coefficients for these muscles and covariates would need further investigation.  相似文献   

3.
This study examined the relationship of muscular and skeletal scores and ultrasound measurements in the live animal, and carcass conformation and fat scores with carcass composition and value using 336 steers, slaughtered at 2 years of age. Live animal scores and measurements were recorded at 8 to 12 months of age and pre-slaughter. Following slaughter, each carcass was classified for conformation and fatness and the right side dissected into meat, fat and bone. Carcass conformation scores and fat scores were both measured on a continuous 15-point scale and ranged from 2.0 to 12.0 and from 2.8 to 13.3, respectively. Pre-slaughter muscular scores showed positive correlations (P < 0.001) ranging from 0.31 to 0.86 with carcass meat proportion, proportion of high-value cuts in the carcass, conformation score and carcass value, significant negative correlations with carcass fat (r = -0.13) and bone (r = -0.81) proportions, and generally low non-significant relationships with the proportion of high-value cuts in meat and carcass fat score. Pre-slaughter ultrasound muscle depth and carcass conformation score showed similar correlations with carcass traits to those using the pre-slaughter muscular scoring procedure. Pre-slaughter ultrasound fat depth showed positive correlations (P < 0.001) with carcass fat proportion (r = 0.59) and fat score (r = 0.63), and significant negative correlations (-0.23 to -0.50) with carcass meat and bone proportions, high-value cuts in the carcass and in meat, and carcass value. Pre-slaughter skeletal scores generally showed poor correlations ranging from -0.38 to 0.52 with the various carcass traits. Corresponding correlations (-0.26 to 0.44) involving records collected at 8 to 12 months of age were lower than those using pre-slaughter records. A one-unit increase in carcass conformation score increased carcass meat proportion and value by 11.2 g/kg and 5.6 cents/kg, respectively. Corresponding values for fat score were -8.2 g/kg and -5.1 cents/kg. In conclusion, both pre-slaughter live animal scores/measurements and carcass classification scores, explained an appreciable amount of the total variation in carcass meat, fat and bone proportions and carcass value, and a moderate amount of the variation in proportion of high-value meat cuts in the carcass.  相似文献   

4.
In genetic improvement programmes for beef cattle, the effect of selecting for a given trait or index on other economically important traits, or their predictors, must be quantified to ensure no deleterious consequential effects go unnoticed. The objective was to compare live animal measurements, carcass composition and plasma hormone and metabolite concentrations of male progeny of sires selected on an economic index in Ireland. This beef carcass index (BCI) is expressed in euros and based on weaning weight, feed intake, carcass weight and carcass conformation and fat scores. The index is used to aid in the genetic comparison of animals for the expected profitability of their progeny at slaughter. A total of 107 progeny from beef sires of high (n = 11) or low (n = 11) genetic merit for the BCI were compared in either a bull (slaughtered at 16 months of age) or steer (slaughtered at 24 months of age) production system, following purchase after weaning (8 months of age) from commercial beef herds. Data were analysed as a 2 × 2 factorial design (two levels of genetic merit by two production systems). Progeny of high BCI sires had heavier carcasses, greater (P < 0.01) muscularity scores after weaning, greater (P < 0.05) skeletal scores and scanned muscle depth pre-slaughter, higher (P < 0.05) plasma insulin concentrations and greater (P < 0.01) animal value (obtained by multiplying carcass weight by carcass value, which was based on the weight of meat in each cut by its commercial value) than progeny of low BCI sires. Regression of progeny performance on sire genetic merit was also undertaken across the entire data set. In steers, the effect of BCI on carcass meat proportion, calculated carcass value (c/kg) and animal value was positive (P < 0.01), while a negative association was observed for scanned fat depth pre-slaughter and carcass fat proportion (P < 0.01), but there was no effect in bulls. The effect of sire expected progeny difference (EPD) for carcass weight followed the same trends as BCI. Muscularity scores, carcass meat proportion and calculated carcass value increased, whereas scanned fat depth, carcass fat and bone proportions decreased with increasing sire EPD for conformation score. The opposite association was observed for sire EPD for fat score. Results from this study show that selection using the BCI had positive effects on live animal muscularity, carcass meat proportion, proportions of high-value cuts and carcass value in steer progeny, which are desirable traits in beef production.  相似文献   

5.
The ability of the biochemical measurements, haem iron, intramuscular fat (IMF%), moisture content, and total, soluble and insoluble collagen contents, to predict untrained consumer sensory scores both across different muscles and within the same muscle from different carcasses were investigated. Sensory scores from 540 untrained French consumers (tenderness, flavour liking, juiciness and overall liking) were obtained for six muscles; outside (m. biceps femoris), topside (m. semimembranosus), striploin (m. longissimus thoracis), rump (m. gluteus medius), oyster blade (m. infraspinatus) and tenderloin (m. psoas major) from each of 18 French and 18 Australian cattle. The four sensory scores were weighted and combined into a single score termed MQ4, which was also analysed. All sensory scores were highly correlated with each other and with MQ4. This in part reflects the fact that MQ4 is derived from the consumer scores for tenderness, juiciness, flavour and overall liking and also reflects an interrelationship between the sensory scores themselves and in turn validates the use of the MQ4 term to reflect the scope of the consumer eating experience. When evaluated across the six different muscles, all biochemical measurements, except soluble collagen, had a significant effect on all of the sensory scores and MQ4. The average magnitude of impact of IMF%, haem iron, moisture content, total and insoluble collagen contents across the four different sensory scores are 34.9, 5.1, 7.2, 36.3 and 41.3, respectively. When evaluated within the same muscle, only IMF% and moisture content had a significant effect on overall liking (5.9 and 6.2, respectively) and flavour liking (6.1 and 6.4, respectively). These results indicate that in a commercial eating quality prediction model including muscle type, only IMF% or moisture content has the capacity to add any precision. However, all tested biochemical measurements, particularly IMF% and insoluble collagen contents, are strong predictors of eating quality when muscle type is not known. This demonstrates their potential usefulness in extrapolating the sensory data derived from these six muscles to other muscles with no sensory data, but with similar biochemical parameters, and therefore reducing the amount of future sensory testing required.  相似文献   

6.
The Meat Standards Australia (MSA) grading scheme has the ability to predict beef eating quality for each ‘cut×cooking method combination’ from animal and carcass traits such as sex, age, breed, marbling, hot carcass weight and fatness, ageing time, etc. Following MSA testing protocols, a total of 22 different muscles, cooked by four different cooking methods and to three different degrees of doneness, were tasted by over 19 000 consumers from Northern Ireland, Poland, Ireland, France and Australia. Consumers scored the sensory characteristics (tenderness, flavor liking, juiciness and overall liking) and then allocated samples to one of four quality grades: unsatisfactory, good-every-day, better-than-every-day and premium. We observed that 26% of the beef was unsatisfactory. As previously reported, 68% of samples were allocated to the correct quality grades using the MSA grading scheme. Furthermore, only 7% of the beef unsatisfactory to consumers was misclassified as acceptable. Overall, we concluded that an MSA-like grading scheme could be used to predict beef eating quality and hence underpin commercial brands or labels in a number of European countries, and possibly the whole of Europe. In addition, such an eating quality guarantee system may allow the implementation of an MSA genetic index to improve eating quality through genetics as well as through management. Finally, such an eating quality guarantee system is likely to generate economic benefits to be shared along the beef supply chain from farmers to retailors, as consumers are willing to pay more for a better quality product.  相似文献   

7.
Quantifying consumer responses to beef across a broad range of demographics, nationalities and cooking methods is vitally important for any system evaluating beef eating quality. On the basis of previous work, it was expected that consumer scores would be highly accurate in determining quality grades for beef, thereby providing evidence that such a technique could be used to form the basis of and eating quality grading system for beef. Following the Australian MSA (Meat Standards Australia) testing protocols, over 19 000 consumers from Northern Ireland, Poland, Ireland, France and Australia tasted cooked beef samples, then allocated them to a quality grade; unsatisfactory, good-every-day, better-than-every-day and premium. The consumers also scored beef samples for tenderness, juiciness, flavour-liking and overall-liking. The beef was sourced from all countries involved in the study and cooked by four different cooking methods and to three different degrees of doneness, with each experimental group in the study consisting of a single cooking doneness within a cooking method for each country. For each experimental group, and for the data set as a whole, a linear discriminant function was calculated, using the four sensory scores which were used to predict the quality grade. This process was repeated using two conglomerate scores which are derived from weighting and combining the consumer sensory scores for tenderness, juiciness, flavour-liking and overall-liking, the original meat quality 4 score (oMQ4) (0.4, 0.1, 0.2, 0.3) and current meat quality 4 score (cMQ4) (0.3, 0.1, 0.3, 0.3). From the results of these analyses, the optimal weightings of the sensory scores to generate an ‘ideal meat quality 4 score (MQ4)’ for each country were calculated, and the MQ4 values that reflected the boundaries between the four quality grades were determined. The oMQ4 weightings were far more accurate in categorising European meat samples than the cMQ4 weightings, highlighting that tenderness is more important than flavour to the consumer when determining quality. The accuracy of the discriminant analysis to predict the consumer scored quality grades was similar across all consumer groups, 68%, and similar to previously reported values. These results demonstrate that this technique, as used in the MSA system, could be used to predict consumer assessment of beef eating quality and therefore to underpin a commercial eating quality guarantee for all European consumers.  相似文献   

8.
Ossification score and animal age are both used as proxies for maturity-related collagen crosslinking and consequently decreases in beef tenderness. Ossification score is strongly influenced by the hormonal status of the animal and may therefore better reflect physiological maturity and consequently eating quality. As part of a broader cross-European study, local consumers scored 18 different muscle types cooked in three ways from 482 carcasses with ages ranging from 590 to 6135 days and ossification scores ranging from 110 to 590. The data were studied across three different maturity ranges; the complete range of maturities, a lesser range and a more mature range. The lesser maturity group consisted of carcasses having either an ossification score of 200 or less or an age of 987 days or less with the remainder in the greater maturity group. The three different maturity ranges were analysed separately with a linear mixed effects model. Across all the data, and for the greater maturity group, animal age had a greater magnitude of effect on eating quality than ossification score. This is likely due to a loss of sensitivity in mature carcasses where ossification approached and even reached the maximum value. In contrast, age had no relationship with eating quality for the lesser maturity group, leaving ossification score as the more appropriate measure. Therefore ossification score is more appropriate for most commercial beef carcasses, however it is inadequate for carcasses with greater maturity such as cull cows. Both measures may therefore be required in models to predict eating quality over populations with a wide range in maturity.  相似文献   

9.
Equations for predicting the meat, fat and bone proportions in beef carcasses using the European Union carcass classification scores for conformation and fatness, and hindquarter composition were developed and their accuracy was tested using data from 662 cattle. The animals included bulls, steers and heifers, and comprised of Holstein–Friesian, early- and late-maturing breeds × Holstein–Friesian, early-maturing × early-maturing, late-maturing × early-maturing and genotypes with 0.75 or greater late-maturing ancestry. Bulls, heifers and steers were slaughtered at 15, 20 and 24 months of age, respectively. The diet offered before slaughter includes grass silage only, grass or maize silage plus supplementary concentrates, or concentrates offered ad libitum plus 1 kg of roughage dry matter per head daily. Following the slaughter, carcasses were classified mechanically for conformation and fatness (scale 1 to 15), and the right side of each carcass was dissected into meat, fat and bone. Carcass conformation score ranged from 4.7 to 14.4, 5.4 to 10.9 and 2.0 to 12.0 for bulls, heifers and steers, respectively; the corresponding ranges for fat score were 2.7 to 11.5, 3.2 to 11.3 and 2.8 to 13.3. Prediction equations for carcass meat, fat and bone proportions were developed using multiple regression, with carcass conformation and fat score both included as continuous independent variables. In a separate series of analyses, the independent variable in the model was the proportion of the trait under investigation (meat, fat or bone) in the hindquarter. In both analyses, interactions between the independent variables and gender were tested. The predictive ability of the developed equations was assed using cross-validation on all 662 animals. Carcass classification scores accounted for 0.73, 0.67 and 0.71 of the total variation in carcass meat, fat and bone proportions, respectively, across all 662 animals. The corresponding values using hindquarter meat, fat and bone in the model were 0.93, 0.87 and 0.89, respectively. The bias of the prediction equations when applied across all animals was not different from zero, but bias did exist among some of the genotypes of animals present. In conclusion, carcass classification scores and hindquarter composition are accurate and efficient predictors of carcass meat, fat and bone proportions.  相似文献   

10.
This paper investigated whether a single Hormonal Growth Promotant (HGP) adjustment in the Meat Standards Australia (MSA) beef grading model adequately predicted consumer eating quality of beef from cattle treated with different HGP formulations. This paper used consumer sensory data from two experiments. In experiment one, a total of 300 steers were allocated to three treatments; control (CON-100-F), 100 day oestradiol only HGP (OES-100-F), or a combination of trenbolone acetate and oestradiol HGP (TBA+OES-100-F) and finished in a feedlot for 73 days. In experiment two, a total of 200 steers were allocated either control or 400 day oestradiol only HGP treatments and finished on pasture for 389 days. Steers were slaughtered by finishing regime and carcass traits recorded. The anterior and posterior portions of the m. longissimus lumborum (LL-A and LL-P, respectively) and m. gluteus medius (GM) were collected and aged for five or 35 days. Grilled meat samples were scored for tenderness, juiciness, liking of flavour and overall acceptability using untrained consumers. Sensory scores were weighted by 0.3. 0.1, 0.3 and 0.3, respectively and summed to calculate a meat quality (MQ4) score. Residual MQ4 scores were calculated (observed MQ4 minus the predicted MQ4 score). The MSA model accounts for varied impacts of different HGPs on eating quality through a single HGP adjustment, and indirect impacts on carcass traits. For the majority of the HGP treatment samples, the residual MQ4 scores were not different to zero (5/18), or were positive i.e. the MSA model under-predicted these samples (11/18). Under-prediction was predominately for 35 day aged (7/9) and GM HGP treatment samples (6/6) and was considered low, with the majority less than ±5 MQ4 units. Under-prediction could be considered as advantageous through providing an additional safeguard to protect the interests of the consumers, rather than if the model had over-predicted and resulted in a more negative eating quality experience than expected. Some over-prediction was observed in the CON-100-F and TBA+OES-100-F treatment samples, which may be due to factors such as genetic variation and/or production environment. Minimal bias was observed when residual MQ4 was regressed against predicted MQ4 for the range of feeding regimes, muscles, ageing periods and treatment groups. This study showed that a single HGP adjustment in the MSA beef grading model, combined with the indirect effects of the different HGP formulations on carcass traits, provided a reasonable prediction of meat eating quality for different HGP formulations.  相似文献   

11.
In a population of 268 yearling bulls, those carcasses graded as U-, U0 or U+ for beef carcass conformation (n = 240) and those graded as 2-, 20 or 2+ for beef carcass fatness (n = 213) were selected to study the efficiency of carcass weight, carcass dimensions and instrumental colour of latissimus dorsi, rectus abdominis and subcutaneous fat, to discriminate among these carcass grades, in a population of high-muscled and very lean carcasses from young bulls. The increase in conformation grade meant an increase in carcass weight and perimeter of the leg. Classifiers use attributes characterizing muscular development and carcass profiles from a general impression of the whole carcass. There were no significant differences for carcass weight or carcass dimensions, among the carcasses classified according to the three fat classes. The a* and b* coordinate values for the latissimus dorsi muscle were observed to decrease significantly as the carcass conformation score increased (P < 0.05). However, muscle and subcutaneous fat of fatter carcasses showed higher a*, b* colour coordinates and chroma (C*) values than leaner carcasses. The CIE (Commission International de l'éclairage) L*, a* and b* colour coordinate measurements taken on the carcasses 45 min post mortem varied significantly from the readings taken after hanging for 24 h (P < 0,001). The higher a* and b* values on the carcasses chilled for 24 h could be caused by oxygenation of both subcutaneous fat, and latissimus dorsi and rectus abdominis muscles in the time elapsing after slaughter and after carcass exposition to circulating air in the cooler for 24 h. Lightness of the latissimus dorsi muscle underwent a decrease, compared with an increase in the rectus abdominis muscle. Hardening of the subcutaneous fat during cold storage may exert an influence on the decrease in lightness observed. These differences in carcass colour during chilling storage would suggest that the relationship between carcass colour and conformation grades was higher shortly after slaughter. Both L* colour coordinate of fat colour (P < 0.01) and a*, b* and C* colour coordinates of latissimus dorsi muscle (P < 0.05) were related to conformation classification. Colour was more efficient to differentiate conformation than fat cover classes. Sixty-two percent of carcasses were correctly classified for conformation by colour differences but only 37% of carcasses were correctly classified for fatness by colour.  相似文献   

12.
A simple index that reflects the potential eating quality of beef carcasses is very important for producer feedback. The Meat Standards Australia (MSA) Index reflects variation in carcass quality due to factors that are influenced by producers (hot carcass weight, rib fat depth, hump height, marbling and ossification scores along with milk fed veal category, direct or saleyard consignment, hormonal growth promotant status and sex). In addition, processor impacts on meat quality are standardised so that the MSA Index could be compared across time, breed and geographical regions. Hence, the MSA Index was calculated using achilles hung carcasses, aged for 5 days postmortem. Muscle pH can be impacted by production, transport, lairage or processing factors, hence the MSA Index assumes a constant pH of 5.6 and loin temperature of 7oC for all carcasses. To quantify the cut weight distribution of the 39 MSA cuts in the carcass, 40 Angus steers were sourced from the low (n=13), high (n=15) and myostatin (n=12) muscling selection lines. The left side of each carcass was processed down to the 39 trimmed MSA cuts. There was no difference in MSA cut distribution between the low and high muscling lines (P>0.05), although there were differences with nine cuts from the myostatin line (P<0.05). There was no difference in the MSA Index calculated using actual muscle percentages and using the average from the low and high muscling lines (R2=0.99). Different cooking methods impacted via a constant offset between eating quality and carcass input traits (R2=1). The MSA Index calculated for the four most commercially important cuts was highly related to the index calculated using all 39 MSA cuts (R2=0.98), whilst the accuracy was lower for an index calculated using the striploin (R2=0.82). Therefore, the MSA Index was calculated as the sum of the 39 eating quality scores predicted at 5 days ageing, based on their most common cooking method, weighted by the proportions of the individual cut relative to total weight of all cuts. The MSA Index provides producers with a tool to assess the impact of management and genetic changes on the predicted eating quality of the carcass. The MSA Index could also be utilised for benchmarking and to track eating quality trends at farm, supply chain, regional, state or national levels.  相似文献   

13.
The Australian prime lamb industry is seeking to improve lean meat yield (LMY) as a means to increasing efficiency and profitability across the whole value chain. The LMY of prime lambs is affected by genetics and on-farm nutrition from birth to slaughter and is the total muscle weight relative to the total carcass weight. Under the production conditions of south eastern Australia, many ewe flocks experience a moderate reduction in nutrition in mid to late pregnancy due to a decrease in pasture availability and quality. Correcting nutritional deficits throughout gestation requires the feeding of supplements. This enables the pregnant ewe to meet condition score (CS) targets at lambing. However, limited resources on farm often mean it is difficult to effectively manage nutritional supplementation of the pregnant ewe flock. The impact of reduced ewe nutrition in mid to late pregnancy on the body composition of finishing lambs and subsequent carcass composition remains unknown. This study investigated the effect of moderately reducing ewe nutrition in mid to late gestation on the body composition of finishing lambs and carcass composition at slaughter on a commercial scale. Multiple born lambs to CS2.5 target ewes were lighter at birth and weaning, had lower feedlot entry and exit weights with lower pre-slaughter and carcass weights compared with CS3.0 and CS3.5 target ewes. These lambs also had significantly lower eye muscle and fat depth when measured by ultrasound prior to slaughter and carcass subcutaneous fat depth measured 110 mm from the spine along the 12th rib (GR 12th) and at the C-site (C-fat). Although carcasses were ~5% lighter, results showed that male progeny born to ewes with reduced nutrition from day 50 gestation to a target CS2.5 at lambing had a higher percentage of lean tissue mass as measured by dual energy X-ray absorptiometry and a lower percentage of fat during finishing and at slaughter, with the multiple born progeny from CS3.0 and CS3.5 target ewes being similar. These data suggest lambs produced from multiple bearing ewes that have had a moderate reduction in nutrition during pregnancy are less mature. This effect was also independent of lamb finishing system. The 5% reduction in carcass weight observed in this study would have commercially relevant consequences for prime lamb producers, despite a small gain in LMY.  相似文献   

14.
The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit contemporaries. The superior carcass characteristics of the genetically elite animals materialised in carcasses worth €187 more than those of the lowest genetic merit animals. Although the phenotypic difference in carcass traits of animals divergent in terminal index differed statistically by animal gender and early life experience, the detected interactions were generally biologically small. This study clearly indicates that selection on an appropriate terminal index will produce higher performing animals and this was consistent across all production systems investigated.  相似文献   

15.
The effects of sex, slaughter weight and carcass weight on carcass characteristics and meat quality traits were evaluated using 100 Segureña lambs. The management of all lambs was similar prior to slaughter at 19–25 kg. Slaughtered animals with a hot carcass weight below 20 kg were assigned to class B, and those greater than 22 kg to class C. Carcass weight had a significant influence on “non-carcass” components, dressing percentage, subjective carcass conformation, fat deposits, carcass fatness, bone and most carcass measurements. Sex had a significant effect on age at slaughter, “non-carcass” components, rib measurements, dressing percentage, fat deposits, and neck and shoulder percentage. As the weight increased, the carcass measurements also increased. Concurrently, while improving the conformation indices of the carcass, leg and dressing percentages, neither the commercial cuts of the animal nor tissue composition was significantly affected. Sex primarily affected the quantity of all types of fat deposits.  相似文献   

16.
Intramuscular fat percentage (IMF%) has been shown to have a positive influence on the eating quality of red meat. Selection of Australian lambs for increased lean tissue and reduced carcass fatness using Australian Sheep Breeding Values has been shown to decrease IMF% of the Muscularis longissimus lumborum. The impact this selection has on the IMF% of other muscle depots is unknown. This study examined IMF% in five different muscles from 400 lambs (M. longissimus lumborum, Muscularis semimembranosus, Muscularis semitendinosus, Muscularis supraspinatus, Muscularis infraspinatus). The sires of these lambs had a broad range in carcass breeding values for post-weaning weight, eye muscle depth and fat depth over the 12th rib (c-site fat depth). Results showed IMF% to be highest in the M. supraspinatus (4.87±0.1, P<0.01) and lowest in the M. semimembranosus (3.58±0.1, P<0.01). Hot carcass weight was positively associated with IMF% of all muscles. Selection for decreasing c-site fat depth reduced IMF% in the M. longissimus lumborum, M. semimembranosus and M. semitendinosus. Higher breeding values for post-weaning weight and eye muscle depth increased and decreased IMF%, respectively, but only in the lambs born as multiples and raised as singles. For each per cent increase in lean meat yield percentage (LMY%), there was a reduction in IMF% of 0.16 in all five muscles examined. Given the drive within the lamb industry to improve LMY%, our results indicate the importance of continued monitoring of IMF% throughout the different carcass regions, given its importance for eating quality.  相似文献   

17.
The beef industry must become more responsive to the changing market place and consumer demands. An essential part of this is quantifying a consumer’s perception of the eating quality of beef and their willingness to pay for that quality, across a broad range of demographics. Over 19 000 consumers from Northern Ireland, Poland, Ireland and France each tasted seven beef samples and scored them for tenderness, juiciness, flavour liking and overall liking. These scores were weighted and combined to create a fifth score, termed the Meat Quality 4 score (MQ4) (0.3×tenderness, 0.1×juiciness, 0.3×flavour liking and 0.3×overall liking). They also allocated the beef samples into one of four quality grades that best described the sample; unsatisfactory, good-every-day, better-than-every-day or premium. After the completion of the tasting panel, consumers were then asked to detail, in their own currency, their willingness to pay for these four categories which was subsequently converted to a proportion relative to the good-every-day category (P-WTP). Consumers also answered a short demographic questionnaire. The four sensory scores, the MQ4 score and the P-WTP were analysed separately, as dependant variables in linear mixed effects models. The answers from the demographic questionnaire were included in the model as fixed effects. Overall, there were only small differences in consumer scores and P-WTP between demographic groups. Consumers who preferred their beef cooked medium or well-done scored beef higher, except in Poland, where the opposite trend was found. This may be because Polish consumers were more likely to prefer their beef cooked well-done, but samples were cooked medium for this group. There was a small positive relationship with the importance of beef in the diet, increasing sensory scores by about 4% in Poland and Northern Ireland. Men also scored beef about 2% higher than women for most sensory scores in most countries. In most countries, consumers were willing to pay between 150 and 200% more for premium beef, and there was a 50% penalty in value for unsatisfactory beef. After quality grade, by far the greatest influence on P-WTP was country of origin. Consumer age also had a small negative relationship with P-WTP. The results indicate that a single quality score could reliably describe the eating quality experienced by all consumers. In addition, if reliable quality information is delivered to consumers they will pay more for better quality beef, which would add value to the beef industry and encourage improvements in quality.  相似文献   

18.
Validation of economic indexes under a controlled experimental environment, can aid in their acceptance and use as breeding tools to increase herd profitability. The objective of this study was to compare intake, growth and carcass traits in bull and steer progeny of high and low ranking sires, for genetic merit in an economic index. The Beef Carcass Index (BCI; expressed in euro (€) and based on weaning weight, feed intake, carcass weight, carcass conformation and fat scores) was generated by the Irish Cattle Breeding Federation as a tool to compare animals on genetic merit for the expected profitability of their progeny at slaughter. A total of 107 male suckler herd progeny, from 22 late-maturing 'continental' beef sires of high (n = 11) or low (n = 11) BCI were compared under either a bull or steer production system, and slaughtered at approximately 16 and 24 months of age, respectively. All progeny were purchased after weaning at approximately 6 to 8 months of age. Dry matter (DM) intake and live-weight gain in steer progeny offered grazed grass or grass silage alone, did not differ between the two genetic groups. Similarly, DM intake and feed efficiency did not differ between genetic groups during an ad libitum concentrate-finishing period on either production system. Carcasses of progeny of high BCI sires were 14 kg heavier (P < 0.05) than those of low BCI sires. In a series of regression analyses, increasing sire BCI resulted in increases in carcass weight (P < 0.01) and carcass conformation (P = 0.051) scores, and decreases in carcass fat (P < 0.001) scores, but had no effect on weaning weight or DM intake of the progeny. Each unit increase in sire expected progeny difference led to an increase in progeny weaning weight, DM intake, carcass weight, carcass conformation score and carcass fat score of 1.0 (s.e. = 0.53) kg, 1.1 (s.e. = 0.32) kg, 1.3 (s.e. = 0.31) kg, 0.9 (s.e. = 0.32; scale 1 to 15) and 1.0 (s.e. = 0.25; scale 1 to 15), respectively, none of which differed from the theoretical expectation of unity. The expected difference in profitability at slaughter between progeny of the high and low BCI sires was €42, whereas the observed phenotypic profit differential of the progeny was €53 in favour of the high BCI sires. Results from this study indicate that the BCI is a useful tool in the selection of genetically superior sires, and that actual progeny performance under the conditions of this study is within expectations for both bull and steer beef production systems.  相似文献   

19.
The objectives of this study were to investigate the effect of dietary lipid source on the growth and carcass characteristics of lambs sourced from a range of crossbred hill ewes. Over a 2-year period, 466 lambs representing the progeny of Scottish Blackface (BF × BF), Swaledale (SW) × BF, North Country Cheviot (CH) × BF, Lleyn (LL) × BF and Texel (T) × BF ewes were sourced from six commercial hill flocks and finished on one of four diets: grass pellets (GP), cereal-based concentrate (CC), CC enriched with oilseed rape (CR) and CC enriched with fish oil (CF). Dry matter intake (DMI) was highest (P < 0.001) in lambs offered GP; however, carcass weight gain (CWG) and feed conversion efficiency were higher (P < 0.001) in lambs fed concentrate-based diets. For lambs offered concentrate-based diets, DMI and live weight gain were lower (P < 0.001) for CF than CC or CR. Lambs with T × BF dams achieved a higher (P < 0.05) daily CWG and CWG/kg DMI than BF × BF, SW × BF or LL × BF dams. When lambs were slaughtered at fat score 3, CH × BF, LL × BF and T × BF dams increased carcass weight by 0.8 to 1.4 kg (P < 0.001) and conformation score (CS) by 0.2 to 0.4 units (P < 0.001) compared with BF × BF or SW × BF dams. However, breed effects on carcass conformation were reduced by 50% when lambs were slaughtered at a constant carcass weight. Diets CC and CR increased carcass weight by 0.8 to 1.6 kg (P < 0.001) and CS by 0.1 to 0.3 units (P < 0.001) compared with GP and CF. Both, dam breed and dietary effects on carcass conformation were associated with an increase (P < 0.001) in shoulder width of the lambs. Lambs fed CF and slaughtered at a constant carcass weight had more subcutaneous fat over the Longissumus dorsi (P < 0.05), Iliocostalis thoracis (P < 0.001) and Obliquus internus abdominis (P < 0.001) compared with those fed CC. However, these effects were removed when lambs were slaughtered at a constant fat score. At both endpoints, lambs from T × BF dams contained less (P < 0.05) perinephric and retroperitoneal fat than SW × BF or LL × BF dams fed GP or CC, respectively. The results from this study show that using crossbred ewes sired by CH, LL or T sires will increase carcass weight and improve carcass conformation of lambs sourced from hill flocks. Inclusion of oilseed rape in lamb finishing diets had only minor effects on performance compared with a standard CC but feeding fish oil or GP impacted negatively on lamb growth and carcass quality.  相似文献   

20.
The objective of this study was to quantify the genetic variation in carcass cuts predicted using digital image analysis in commercial cross-bred cattle. The data set comprised 38,404 steers and 14,318 heifers from commercial Irish herds. The traits investigated included the weights of lower value cuts (LVC), medium value cuts (MVC), high value cuts (HVC), very high value cuts (VHVC) and total meat weight. In addition, the weights of total fat and total bones were available on the steers. Heritability of carcass cut weights, within gender, was estimated using an animal linear model, whereas genetic and phenotypic correlations among cuts were estimated using a sire linear model. Carcass weight was included as a covariate in all models. In the steers, heritability ranged from 0.13 (s.e. = 0.02) for VHVC to 0.49 (s.e. = 0.03) for total bone weight, and in the heifers heritability ranged from 0.15 (s.e. = 0.04) for MVC to 0.72 (s.e. = 0.06) for total meat weight. The coefficient of genetic variation for the different cuts varied from 1.4% to 3.6%. Genetic correlations between the different cut weights were all positive and ranged from 0.45 (s.e. = 0.08) to 0.89 (s.e. = 0.03) in the steers, and from 0.47 (s.e. = 0.14) to 0.82 (s.e. = 0.06) in the heifers. Genetic correlations between the wholesale cut weights and carcass conformation ranged from 0.32 (s.e. = 0.06) to 0.45 (s.e. = 0.07) in the steers, and from 0.10 (s.e. = 0.12) to 0.38 (s.e. = 0.09) in the heifers. Genetic correlations between the same wholesale cut traits in steers and heifers ranged from 0.54 (s.e. = 0.14) for MVC to 0.79 (s.e. = 0.06) for total meat weight; genetic correlations between carcass weight and carcass classification for conformation and fat score in both genders varied from 0.80 to 0.87. The existence of genetic variation in carcass cut traits, coupled with the routine availability of predicted cut weights from digital image analysis, clearly shows the potential to genetically improve carcass value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号