首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine effects of shoe midsole densities and mechanical demands (landing heights) on impact shock attenuation and lower extremity biomechanics during a landing activity. Nine healthy male college athletes performed 5 trials of step-off landing in each of 9 test conditions, i.e., a combination of landings in shoes of 3 midsole densities (soft, normal, hard) from each of 3 landing potential energy (PE) levels (low, median, high). Ground reaction forces (GRF), accelerations (ACC) of the tibia and forehead, and sagittal kinematic data were sampled simultaneously. A 3 x 3 two-way (surface x height) repeated-measures analysis of variance (ANOVA) was performed on selected kinematic, ACC, and GRF variables; a 3 x 3 x 3 three-way (surface x height x joint) ANOVA was performed on variables related to eccentric muscular work. The GRF results showed that the forefoot peak GRF in the normal and hard midsoles was significantly greater than the soft midsole at the low and median PEs. Rearfoot peak GRF was significantly greater for the hard midsole than for the soft and normal midsoles at the median and high PEs, respectively. The peak head and tibia peak ACC were also attenuated in similar fashion. Kinematic variables did not vary significantly across different midsoles, nor did energy absorbed through lower extremity extensors in response to the increased shoe stiffness. Knee joint extensors were shown to be dominant in attenuating the forefoot impact force across the landing heights. The results showed limited evidence of impact-attenuating benefits of the soft midsole in the basketball shoes.  相似文献   

2.
It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.  相似文献   

3.
Previous studies investigating the effects of shoe midsole hardness on running kinematics have often used male subjects from within a narrow age range. It is unknown whether shoe midsole hardness has the same kinematic effect on male and female runners as well as runners from different age categories. As sex and age have an effect on running kinematics, it is important to understand if shoe midsole hardness affects the kinematics of these groups in a similar fashion. However, current literature on the effects of sex and age on running kinematics are also limited to a narrow age range distribution in their study population. Therefore, this study tested the influence of three different midsole hardness conditions, sex and age on the lower extremity kinematics during heel-toe running. A comprehensive analysis approach was used to analyze the lower-extremity kinematic gait variables for 93 runners (male and female) aged 16-75 years. Participants ran at 3.33±0.15 m/s on a 30 m-long runway with soft, medium and hard midsoles. A principal component analysis combined with a support vector machine showed that running kinematics based on shoe midsole hardness, sex, and age were separable and classifiable. Shoe midsole hardness demonstrated a subject-independent effect on the kinematics of running. Additionally, it was found that age differences affected the more dominant movement components of running compared to differences due to the sex of a runner.  相似文献   

4.
Unstable shoes (US) continually perturb gait which can train the lower limb musculature, but muscle co-contraction and potential joint stiffness strategies are not well understood. A shoe with a randomly perturbing midsole (IM) may enhance these adaptations. This study compares ankle and knee joint stiffness, and ankle muscle co-contraction during walking and running in US, IM and a control shoe in 18 healthy females. Ground reaction forces, three-dimensional kinematics and electromyography of the gastrocnemius medialis and tibialis anterior were recorded. Stiffness was calculated during loading and propulsion, derived from the sagittal joint angle-moment curves. Ankle co-contraction was analysed during pre-activation and stiffness phases. Ankle stiffness reduced and knee stiffness increased during loading in IM and US whilst walking (ankle, knee: p = 0.008, 0.005) and running (p < 0.001; p = 0.002). During propulsion, the opposite joint stiffness re-organisation was found in IM whilst walking (both joints p < 0.001). Ankle co-contraction increased in IM during pre-activation (walking: p = 0.001; running: p < 0.001), and loading whilst walking (p = 0.003), not relating to ankle stiffness. Results identified relative levels of joint stiffness change in unstable shoes, providing new evidence of how stability is maintained at the joint level.  相似文献   

5.
Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km.week-1) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m.s-1) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m.s-1), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.  相似文献   

6.
A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, kcr, which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion.  相似文献   

7.
The purpose of the study was to investigate the physiological cost of running in spring-boots compared with running in running shoes at different speeds. During testing, subjects (n = 7) completed running trials while wearing spring-boots and running shoes. Three speed conditions (2.23, 2.68, and 3.13 m.s(-1)) were completed per shoe condition (i.e., spring-boots and running shoes). Rate of oxygen consumption (Vo(2)), heart rate (HR), rating of perceived exertion (RPE), and stride frequency were recorded for each condition. Order of shoe conditions was balanced, with speeds tested continuously from slow to fast. There was no difference in Vo(2), HR, or RPE between shoe conditions across speeds (p > 0.05). Stride frequency was lower during running in spring-boots vs. running shoes at each speed (speed of spring-boots vs. running shoes for 2.23 m x s(-1): 69.9 +/- 2.9 strides x min(-1) vs. 75.6 +/- 3.5 strides x min(-1); for 2.68 m x s(-1): 71.3 +/- 5.2 strides x min(-1) vs. 79.4 +/- 5.0 strides x min(-1); for 3.13 m x s(-1): 73.6 +/- 7.3 strides x min(-1) vs. 83.1 +/- 8.2 strides x min(-1); p < 0.05). Despite the added mass to the lower extremity and change in stride frequency during running in spring-boots, the physiological cost of running was similar to that of running in running shoes. Exercising while running in spring-boots may provide less impact force with no change in running economy.  相似文献   

8.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

9.

Background

Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon.

Methods

Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running).

Results

Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition.

Conclusion

Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.  相似文献   

10.
Several spring–damper–mass models of the human body have been developed in order to reproduce the measured ground vertical reaction forces during human running (McMahon and Cheng, 1990; Ferris et al., 1999; Liu and Nigg, 2000). In particular, Liu and Nigg introduced at the lower level of their model, i.e. at the interface between the human body and the ground, a nonlinear element representing simultaneously the shoe midsoles and the ground flexibility. The ground reaction force is modelled as the force supported by this nonlinear element, whose parameters are identified from several sets of experimental data. This approach proved to be robust and quite accurate. However, it does not explicitly take into account the shoe and the ground properties. It turns out to be impossible to study the influence of shoe materials on the impact force, for instance for footwear design purposes. In this paper, a modification of the Liu and Nigg's model is suggested, where the original nonlinear element is replaced with a bi-layered spring–damper–mass model: the first layer represents the shoe midsole and the second layer is associated with the ground.Ground is modelled as an infinite elastic half-space. We have assumed a viscoelastic behaviour of the shoe material, so the damping of shoe material is taken into account. A methodology for the shoe-soles characterization is proposed and used together with the proposed model. A parametric study is then conducted and the influence of the shoe properties on the impact force is quantified. Moreover, it is shown that impact forces are strongly affected by the ground stiffness, which should therefore be considered as an essential parameter in the footwear design.  相似文献   

11.
Mahua (Madhuca longfolia) extract and black grapes (Vitis vinifera) must samples 100:0 (grape:mahua), 95:5 (grape:mahua) and 90:10 (grape:mahua) were analyzed for quality characteristics. Samples were kept for fermentation and monitored for quality analysis for 15 days. 90:10 (grape:mahua) sample was found to be best on the basis of ranking test and subjected to clarification using bentonite and gelatine. Sample treated with a combination of 0.02 g/100 g bentonite and 0.04 g/100 g gelatin showed better results for anthocyanin (52.2 mg/100 g) and tannin (0.038%w/v). After ageing of 3 months TSS was found highest (2.7ºBx) in the non-clarified sample and lowest (2.1ºBx) in sample treated with 0.06 g/100 g bentonite and 0.03 g/100 g gelatine. pH was highest (3.29) in sample treated with 0.06 g/100 g bentonite and 0.03 g/100 g gelatine and lowest (3.16) in sample with 0.04 g/100 g bentonite and 0.03 g/100 g gelatine. Anthocyanin content was highest (56.1 mg/100 g) in control sample and lowest (29.22 mg/100 g) in sample treated with 0.04 g/100 g bentonite and 0.02 g/100 g gelatin. Tannin content was found to be highest (0.079%w/v) in control sample and lowest (0.03%w/v) in sample treated with 0.02 g/100 g bentonite and 0.04 g/100 g gelatine.  相似文献   

12.
There are evidences to suggest that wearing footwear constrains the natural barefoot motion during locomotion. Unlike prior studies that deduced foot motions from shoe sole displacement parameters, the aim of this study was to examine the effect of footwear motion on forefoot to rearfoot relative motion during walking and running. The use of a multi-segment foot model allowed accurate both shoe sole and foot motions (barefoot and shod) to be quantified. Two pairs of identical sandals with different midsole hardness were used. Ten healthy male subjects walked and ran in each of the shod condition.The results showed that for barefoot locomotion there was more eversion of the forefoot and it occurred faster than for shod locomotion. In this later condition, the range of eversion was reduced by 20% and the rate of eversion in late stance by 60% in comparison to the barefoot condition. The sole constrained both the torsional (eversion/inversion) and adduction range of motion of the foot. Interestingly, during the push-off phase of barefoot locomotion the rate and direction of forefoot torsion varied between individuals. However, most subjects displayed a forefoot inversion direction of motion while shod. Therefore, this experiment showed that the shoes not only restricted the natural motion of the barefoot but also appeared to impose a specific foot motion pattern on individuals during the push-off phase. These findings have implications for the matching of footwear design characteristics to individual natural foot function.  相似文献   

13.
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.  相似文献   

14.
Electromyographic (EMG) activity is associated with several tasks prior to landing in walking and running including positioning the leg, developing joint stiffness and possibly control of soft tissue compartment vibrations. The concept of muscle tuning suggests one reason for changes in muscle activity pattern in response to small changes in impact conditions, if the frequency content of the impact is close to the natural frequency of the soft tissue compartments, is to minimize the magnitude of soft tissue compartment vibrations. The mechanical properties of the soft tissue compartments depend in part on muscle activations and thus it was hypothesized that changes in the muscle activation pattern associated with different impact conditions would result in a change in the acceleration transmissibility to the soft tissue compartments. A pendulum apparatus was used to systematically administer impacts to the heel of shod male participants. Wall reaction forces, EMG of selected leg muscles, soft tissue compartment and shoe heel cup accelerations were quantified for two different impact conditions. The transmissibility of the impact acceleration to the soft tissue compartments was determined for each subject/soft tissue compartment/shoe combination. For this controlled impact situation it was shown that changes in the damping properties of the soft tissue compartments were related to changes in the EMG intensity and/or mean frequency of related muscles in response to a change in the impact interface conditions. These results provide support for the muscle tuning idea--that one reason for the changes in muscle activity in response to small changes in the impact conditions may be to minimize vibrations of the soft tissue compartments that are initiated at heel-strike.  相似文献   

15.
Integrated biomechanical and engineering assessments were used to determine how humans responded to variations in turf during running and turning. Ground reaction force (AMTI, 960 Hz) and kinematic data (Vicon Peak Motus, 120 Hz) were collected from eight participants during running (3.83 m/s) and turning (10 trials per condition) on three natural turf surfaces in the laboratory. Surface hardness (Clegg hammer) and shear strength (cruciform shear vane) were measured before and after participant testing. Peak loading rate during running was significantly higher (p < .05) on the least hard surface (sandy; 101.48 BW/s ± 23.3) compared with clay (84.67 BW/s ± 22.9). There were no significant differences in running kinematics. Compared with the "medium" condition, fifth MTP impact velocities during turning were significantly (RM-ANOVA, p < .05) lower on clay (resultant: 2.30 m/s [± 0.68] compared with 2.64 m/s [± 0.70]), which was significantly (p < .05) harder "after" and had the greatest shear strength both "before" and "after" participant testing. This unique finding suggests that further study of foot impact velocities are important to increase understanding of overuse injury mechanisms.  相似文献   

16.
This study investigated the effects of worn-out shoes on lower leg stability, shock absorption and energy cost during prolonged walking. Seven male subjects (23.4 +/- 0.5 yr) walked at 4.8 km/h for 60 minutes wearing three different pairs of shoes: two of these pairs had severely and moderately worn soles (EASC: Excessive Attrite Shoe Condition and MASC: Moderate Attrite Shoe Condition, respectively) and the other pair had no wear (NASC: No Attrite Shoe Condition). Impact acceleration at the subtalar at heel strike, rearfoot angles (the subtalar joint and the lower leg) during stance phase, and oxygen uptake (VO2) were measured throughout the 60-minute walk. At the 10th minute of walking, worn-out shoes increased the supination of the subtalar joint and extortion of the lower leg. In addition, VO2 was significant larger in EASC (808.3 ml x min(-1)) than in NASC (749.5 ml x min(-1)). During the 60-minute walk, however, there were no time effects of shoe condition on the rearfoot angles and on VO2. In contrast, impact acceleration at the subtalar joint in EASC remained almost constant until the 30th minute of walking, and then began to elevate. In conclusion, worn-out shoes increased the energy cost and reduced lower leg stability during walking, although these changes were not influenced by walking duration within 60 minutes. However, prolonged walking showed the potential negative effect of worn-out shoe on shock absorption.  相似文献   

17.
Altering footwear worn during performance of the barbell back squat has been shown to change motion patterns, but it is not completely understood how this affects biomechanical loading demands. The primary objective was to compare lower back and extremity net joint moments in 24 experienced weightlifters (12M, 12F) who performed 80% one-repetition maximum back squats under three different footwear conditions (barefoot, running shoes, weightlifting shoes). Results showed that there was a significant main effect of footwear condition on the knee extension moment (p = 0.001), where the running and weightlifting shoes produced significantly larger moments than the barefoot condition. There was also a main effect of footwear condition on knee external rotation moments (p = 0.002), where the weightlifting shoe produced significantly larger moments than both other conditions. At the hip, there was also a main effect of footwear condition on the extension moment (p = 0.004), where the barefoot condition produced significantly larger moments than either the running shoe or weightlifting shoe condition. Lastly, there was also a significant main effect of footwear condition on both hip external (p = 0.005) and internal (p = 0.003) rotation moments, where the barefoot condition produced greater internal rotation and less external rotation moments than either shod condition. This study indicates that altering footwear conditions while performing the barbell back squat may redistribute the internal biomechanical loading patterns amongst the lower extremity joints and perhaps alter the musculoskeletal adaptations elicited.  相似文献   

18.
The shape of mechanically pierced giant vesicles is studied to obtain the elastic modulus of Gaussian curvature of egg lecithin bilayers. It is argued that such experiments are governed by an apparent modulus, ¯κapp, not the true modulus of Gaussian curvature, ¯κ. A theory of ¯κapp is proposed, regarding the pierced bilayer vesicle as a closed monolayer vesicle. The quantity measured, i.e. ¯κapp/κ, where κ is the rigidity, agrees satisfactorily with the theory. We find ¯κapp = -(1.9 ± 0.3) · 10-12 erg (on the basis of κ = (2.3 ± 0.3) · 10-12 erg). The result may have implications for bilayer fusion.  相似文献   

19.
To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45 m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P = .002), due to increased energy absorption at the hip during the DJ. Joint stiffness/impedance was more affected by shoe condition, where overall stiffness/impedance was greater in shod compared to barefoot conditions (P = .036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P = .011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies.  相似文献   

20.
Groucho running   总被引:3,自引:0,他引:3  
An important determinant of the mechanics of running is the effective vertical stiffness of the body. This stiffness increases with running speed. At any one speed, the stiffness may be reduced in a controlled fashion by running with the knees bent more than usual. In a series of experiments, subjects ran in both normal and flexed postures on a treadmill. In other experiments, they ran down a runway and over a force platform. Results show that running with the knees bent reduces the effective vertical stiffness and diminishes the transmission of mechanical shock from the foot to the skull but requires an increase of as much as 50% in the rate of O2 consumption. A new dimensionless parameter (u omega 0/g) is introduced to distinguish between hard and soft running modes. Here, omega 0 is the natural frequency of a mass-spring system representing the body, g is gravity, and u is the vertical landing velocity. In normal running, this parameter is near unity, but in deep-flexed running, where the aerial phase of the stride cycle almost disappears, u omega 0/g approaches zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号