首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington''s disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington''s disease.  相似文献   

2.
3.

Background

The integrated functions of 11 Ser/Thr protein kinases (STPKs) and one phosphatase manipulate the phosphorylation levels of critical proteins in Mycobacterium tuberculosis. In this study, we show that the lone Ser/Thr phosphatase (PstP) is regulated through phosphorylation by STPKs.

Principal Findings

PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by the presence of Zn2+-ions and inorganic phosphate (Pi). PstP is differentially phosphorylated on the cytosolic domain with Thr137, Thr141, Thr174 and Thr290 being the target residues of PknB while Thr137 and Thr174 are phosphorylated by PknA. The Mn2+-ion binding residues Asp38 and Asp229 are critical for the optimal activity of PstP and substitution of these residues affects its phosphorylation status. Native PstP and its phosphatase deficient mutant PstPc D38G are phosphorylated by PknA and PknB in E. coli and addition of Zn2+/Pi in the culture conditions affect the phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase is more active than its unphosphorylated equivalent.

Conclusions and Significance

This study establishes the novel mechanisms for regulation of mycobacterial Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate the signaling through mutually dependent mechanisms. Consequently, PstP phosphorylation may play a critical role in regulating its own activity. Since, the equilibrium between phosphorylated and non-phosphorylated states of mycobacterial proteins is still unexplained, understanding the regulation of PstP may help in deciphering the signal transduction pathways mediated by STPKs and the reversibility of the phenomena.  相似文献   

4.
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr72) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr72, we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr72 does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr72 regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.  相似文献   

5.
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2.  相似文献   

6.
Chaperonins assist in the folding of nascent and misfolded proteins, though the mechanism of folding within the lumen of the chaperonin remains poorly understood. The archeal chaperonin from Methanococcus marapaludis, Mm-Cpn, shares the eightfold double barrel structure with other group II chaperonins, including the eukaryotic TRiC/CCT, required for actin and tubulin folding. However, Mm-Cpn is composed of a single species subunit, similar to group I chaperonin GroEL, rather than the eight subunit species needed for TRiC/CCT. Features of the β-sheet fold have been identified as sites of recognition by group II chaperonins. The crystallins, the major components of the vertebrate eye lens, are β-sheet proteins with two homologous Greek key domains. During refolding in vitro a partially folded intermediate is populated, and partitions between productive folding and off-pathway aggregation. We report here that in the presence of physiological concentrations of ATP, Mm-Cpn suppressed the aggregation of HγD-Crys by binding the partially folded intermediate. The complex was sufficiently stable to permit recovery by size exclusion chromatography. In the presence of ATP, Mm-Cpn promoted the refolding of the HγD-Crys intermediates to the native state. The ability of Mm-Cpn to bind and refold a human β-sheet protein suggests that Mm-Cpn may be useful as a simplified model for the substrate recognition mechanism of TRiC/CCT.  相似文献   

7.
The Merlin gene of Drosophila is homologous to the human Neurofibromatosis 2 (NF2) gene, an important regulator of proliferation and endocytosis of cell receptors. It was earlier shown that the Thr559 residue of the Drosophila Merlin protein was homologous to Ser518 of the human protein (which was already known to undergo phosphorylation); hence, it was assumed that Thr559 of Drosophila also was a substrate of phosphorylation. The mutant Merlin proteins MerT559D (an analog of the phosphorylated form) and MerT559A (a nonphosphorylated form) were constructed and tested, under the conditions of ectopic expression, for the ability to correct the spermatogenesis defects induced by the Mer4 mutation. The mutant form MerT559D was demonstrated to restore the abnormal nebenkern phenotype induced by this mutation, whereas the MerT559A substituted form did not restore this phenotype. Ectopic expression o the wild-type Merlin protein, MerT559A mutant form, and mycMer345–635 truncated protein in a normal genotype resulted in the abnormal nebenkern phenotype, whereas this phenotype was not observed in the case of ectopic expression of the MerT559D analog of the phosphorylated form. Ectopic expression of the mycMer3, mycMerΔBB, and mycMer1–379 truncate variants led to disturbance of meiotic cytokinesis.  相似文献   

8.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

9.
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ.  相似文献   

10.
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C‐terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK‐293) cells. Under basal conditions, MOPr is phosphorylated on Ser363 and Thr370, while in the presence of morphine or [D‐Ala2, NMe‐Phe4, Gly‐ol5]‐enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser356, Thr357 and Ser375. Using N‐terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C‐terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein‐coupled receptor kinase 2 (GRK2) phosphorylates Ser375, protein kinase C (PKC) phosphorylates Ser363, while CaMKII phosphorylates Thr370. Phosphorylation of the GST fusion protein of the C‐terminal tail of MOPr enhanced its ability to bind arrestin‐2 and ‐3. Hence, our study identifies both the basal and agonist‐stimulated phospho‐acceptor sites in the C‐terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.  相似文献   

11.
Abnormal hyperphosphorylation of the microtubule-associated protein Tau is a hallmark of Alzheimer disease and related diseases called tauopathies. As yet, the exact mechanism by which this pathology causes neurodegeneration is not understood. The present study provides direct evidence that Tau abnormal hyperphosphorylation causes its aggregation, breakdown of the microtubule network, and cell death and identifies phosphorylation sites involved in neurotoxicity. We generated pseudophosphorylated Tau proteins by mutating Ser/Thr to Glu and, as controls, to Ala. These mutations involved one, two, or three pathological phosphorylation sites by site-directed mutagenesis using as backbones the wild type or FTDP-17 mutant R406W Tau. Pseudophosphorylated and corresponding control Tau proteins were expressed transiently in PC12 and CHO cells. We found that a single phosphorylation site alone had little influence on the biological activity of Tau, except Thr212, which, upon mutation to Glu in the R406W background, induced Tau aggregation in cells, suggesting phosphorylation at this site along with a modification on the C-terminal of the protein facilitates self-assembly of Tau. The expression of R406W Tau pseudophosphorylated at Thr212, Thr231, and Ser262 triggered caspase-3 activation in as much as 85% of the transfected cells, whereas the corresponding value for wild type pseudophosphorylated Tau was 30%. Cells transfected with pseudophosphorylated Tau became TUNEL-positive.  相似文献   

12.
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.  相似文献   

13.
Misfolding and aggregation of proteins containing expanded polyglutamine repeats underlie Huntington's disease and other neurodegenerative disorders. Here, we show that the hetero-oligomeric chaperonin TRiC (also known as CCT) physically interacts with polyglutamine-expanded variants of huntingtin (Htt) and effectively inhibits their aggregation. Depletion of TRiC enhances polyglutamine aggregation in yeast and mammalian cells. Conversely, overexpression of a single TRiC subunit, CCT1, is sufficient to remodel Htt-aggregate morphology in vivo and in vitro, and reduces Htt-induced toxicity in neuronal cells. Because TRiC acts during de novo protein biogenesis, this chaperonin may have an early role preventing Htt access to pathogenic conformations. Based on the specificity of the Htt-CCT1 interaction, the CCT1 substrate-binding domain may provide a versatile scaffold for therapeutic inhibitors of neurodegenerative disease.  相似文献   

14.
Ca2+ sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr697 and/or Thr855 (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser696 prevents phosphorylation at Thr697. However, the effects of Ser854 and dual Ser696–Thr697 and Ser854–Thr855 phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser696, Thr697, Ser854, and Thr855), Ser phosphorylation events (Ser696/Ser854) and dual Ser/Thr phosphorylation events (Ser696–Thr697 and Ser854–Thr855). Dual phosphorylation at Ser696–Thr697 and Ser854–Thr855 by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr697 and Thr855 by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser696, Thr697, Ser854, and Thr855 in rat caudal artery, whereas U46619 induced Thr697 and Thr855 phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser696–Thr697 and Ser854–Thr855 inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.  相似文献   

15.
Hirudin-1 is a highly selective inhibitor of thrombin secreted by the salivary glands of the medicinal leech Hirudo medicinalis. This direct anticoagulant is used for the treatment and prevention of disorders in the blood coagulation system. Apart from the existing recombinant analogue of hirudin-1 (63-desulfato-hirudin-1) its modified analogues possessing higher activity and stability are of medical value. In this study artificial genes of hirudin-1 and two its analogues ([Leu1, Thr2]-hirudin-1 and [Leu1, Thr2]-hirudin-1/3) were synthesized and cloned in an expression vector pTWIN1 in frame with the gene of mini-intein DnaB from Synechocystis sp. Producing strains of the corresponding fusion proteins were constructed using E. coli strain ER2566. Biotechnological schemes for the production of 63-desulfatohirudin-1 and its analogues were developed. The scheme includes the following stages: isolation of the fusion protein, renaturation of the target protein incorporated into the fusion protein, pH-inducible cleavage of the fusion protein, and chromatographic purification of the target product. Antithrombotic activity of the peptides obtained was determined by a standard amidolytic assay. The developed methods for the production of 63-desulfatohirudin-1, [Leu1, Thr2]-63-desulfatohirudin-1 and [Leu1, Thr2]-63-desulfatohirudin-1/3 allowed us to obtain these peptides with high yields (14, 25 and 24 mg per 1 L of cell culture, respectively) and high activity (13423, 33333 and 19802 ATU/mg, respectively).  相似文献   

16.
17.
The 24p3 protein is a 25 KDa glycoprotein, having been purified from mouse uterine fluid. Thr54, Ser88, and Thr128/Ser129 on the protein molecule were predicted to be the phosphorylation site of casein kinase II, protein kinase C, and cAMP-dependent protein kinase, respectively. Incorporation of phosphate to this protein from [-32P]-ATP was tested in the solution suitable for the three kinases. Neither casein kinase II nor cAMP-dependent protein kinase reacted to the 24p3 protein; however, protein kinase C demonstrated phosphorylation to this protein. This phosphorylation may be competing with a polypeptide segment: Arg79-Tyr-Trp-Ilu-Arg-Thr-Phe-Val-Pro-Ser88-Ser-Arg-Ala-Gly-Gln-Phe-Thr-Leu-Gly97 in the 24p3 protein molecule. To support this theory, Ser88 is a phosphorylation site of protein kinase C on 24p3 protein. The enzyme kinetic parameter, based on the Michaelis-Menten equation, determined Km to be 2.96 M in the phosphorylation of 24p3 protein by the kinase. Both of the phosphorylated and dephosphorylated form of 24p3 protein can enhance the cAMP-dependent protein kinase activity in vitro. In addition, this experiment will show for the first time that serine-phosphorylated 24p3 protein exists in mouse uterine tissue.  相似文献   

18.
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis.  相似文献   

19.
20.
Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1–8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号