首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb.  相似文献   

2.
Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses.Recent, extensive meta-analysis of over a decade of education research has revealed an overwhelming consensus that active learning methods are superior to traditional, passive lecture, in terms of student achievement in post-secondary Science, Technology, Engineering, and Mathematics (STEM) courses [1]. In light of such clear evidence that traditional lecture is among the least effective modes of instruction, many institutions have been abandoning lecture in favor of “flipped” classrooms and active learning strategies. Regrettably, however, STEM courses at most universities continue to feature traditional lecture as the primary mode of instruction.Although next-generation active learning classrooms are becoming more common, large instructor-focused lecture halls with fixed seating are still the norm on most campuses—including ours, for the time being. While there are certainly ways to make learning more active in an amphitheater, peer-interactive instruction is limited in such settings. Of course, laboratories accompanying lectures often provide more active learning opportunities. But in the wake of commendable efforts to increase rigorous laboratory experiences at the sophomore and junior levels at Syracuse University, a difficult decision was made for the two-semester, mixed-majors introductory biology sequence: the lecture sections of the second semester course were decoupled from the laboratory component, which was made optional. There were good reasons for this change, from both departmental and institutional perspectives. However, although STEM students not enrolling in the lab course would arguably be exposed to techniques and develop foundational process skills in the new upper division labs, we were concerned about the implications for achievement among those students who would opt out of the introductory labs. Our concerns were apparently warranted, as students who did not take the optional lab course, regardless of prior achievement, earned scores averaging a letter grade lower than those students who enrolled in the lab. However, students who opted out of the lab but engaged in Peer-Led Team Learning (PLTL) performed at levels equivalent to students who also took the lab course [2].Peer-Led Team Learning is a well-defined active learning model involving small group interactions between students, and it can be used along with or in place of the traditional lecture format that has become so deeply entrenched in university systems (Fig 1, adapted from [3]). PLTL was originally designed and implemented in undergraduate chemistry courses [4,5], and it has since been implemented in other undergraduate science courses, such as general biology and anatomy and physiology [6,7]. Studies on the efficacy of PLTL have shown improvements in students’ grade performance, attitudes, retention in the course [611], conceptual reasoning [12], and critical thinking [13], though findings related to the critical thinking benefits for peer leaders have not been consistent [14].Open in a separate windowFig 1The PLTL model.In the PLTL workshop model, students work in small groups of six to eight students, led by an undergraduate peer leader who has successfully completed the same course in which their peer-team students are currently enrolled. After being trained in group leadership methods, relevant learning theory, and the conceptual content of the course, peer leaders (who serve as role models) work collaboratively with an education specialist and the course instructor to facilitate small group problem-solving. Leaders are not teachers. They are not tutors. They are not considered to be experts in the content, and they are not expected to provide answers to the students in the workshop groups. Rather, they help mentor students to actively construct their own understanding of concepts.  相似文献   

3.
Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such “supervised learning”, using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.  相似文献   

4.
The negative symptoms of schizophrenia (SZ) are associated with a pattern of reinforcement learning (RL) deficits likely related to degraded representations of reward values. However, the RL tasks used to date have required active responses to both reward and punishing stimuli. Pavlovian biases have been shown to affect performance on these tasks through invigoration of action to reward and inhibition of action to punishment, and may be partially responsible for the effects found in patients. Forty-five patients with schizophrenia and 30 demographically-matched controls completed a four-stimulus reinforcement learning task that crossed action (“Go” or “NoGo”) and the valence of the optimal outcome (reward or punishment-avoidance), such that all combinations of action and outcome valence were tested. Behaviour was modelled using a six-parameter RL model and EEG was simultaneously recorded. Patients demonstrated a reduction in Pavlovian performance bias that was evident in a reduced Go bias across the full group. In a subset of patients administered clozapine, the reduction in Pavlovian bias was enhanced. The reduction in Pavlovian bias in SZ patients was accompanied by feedback processing differences at the time of the P3a component. The reduced Pavlovian bias in patients is suggested to be due to reduced fidelity in the communication between striatal regions and frontal cortex. It may also partially account for previous findings of poorer “Go-learning” in schizophrenia where “Go” responses or Pavlovian consistent responses are required for optimal performance. An attenuated P3a component dynamic in patients is consistent with a view that deficits in operant learning are due to impairments in adaptively using feedback to update representations of stimulus value.  相似文献   

5.
We study the stability and information encoding capacity of synchronized states in a neuronal network model that represents part of thalamic circuitry. Our model neurons have a Hodgkin-Huxley-type low-threshold calcium channel, display postinhibitory rebound, and are connected via GABAergic inhibitory synapses.We find that there is a threshold in synaptic strength, c, below which there are no stable spiking network states. Above threshold the stable spiking state is a cluster state, where different groups of neurons fire consecutively, and each neuron fires with the same cluster each time. Weak noise destabilizes this state, but stronger noise drives the system into a different, self-organized, stochastically synchronized state. Neuronal firing is still organized in clusters, but individual neurons can hop from cluster to cluster. Noise can actually induce and sustain such a state below the threshold of synaptic strength. We do find a qualitative difference in the firing patterns between small (10 neurons) and large (1000 neurons) networks.We determine the information content of the spike trains in terms of two separate contributions: the spike-time jitter around cluster firing times, and the hopping from cluster to cluster. We quantify the information loss due to temporally correlated interspike intervals. Recent experiments on the locust olfactory system and striatal neurons suggest that the nervous system may actually use these two channels to encode separate and unique information.  相似文献   

6.
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.  相似文献   

7.
The hippocampus has unique access to neuronal activity across all of the neocortex. Yet an unanswered question is how the transfer of information between these structures is gated. One hypothesis involves temporal-locking of activity in the neocortex with that in the hippocampus. New data from the Matthew E. Diamond laboratory shows that the rhythmic neuronal activity that accompanies vibrissa-based sensation, in rats, transiently locks to ongoing hippocampal θ-rhythmic activity during the sensory-gathering epoch of a discrimination task. This result complements past studies on the locking of sniffing and the θ-rhythm as well as the relation of sniffing and whisking. An overarching possibility is that the preBötzinger inspiration oscillator, which paces whisking, can selectively lock with the θ-rhythm to traffic sensorimotor information between the rat’s neocortex and hippocampus.The hippocampus lies along the margins of the cortical mantle and has unique access to neuronal activity across all of the neocortex. From a functional perspective, the hippocampus forms the apex of neuronal processing in mammals and is a key element in the short-term working memory, where neuronal signals persist for tens of seconds, that is independent of the frontal cortex (reviewed in [1,2]). Sensory information from multiple modalities is highly transformed as it passes from primary and higher-order sensory areas to the hippocampus. Several anatomically defined regions that lie within the temporal lobe take part in this transformation, all of which involve circuits with extensive recurrent feedback connections (reviewed in [3]) (Fig 1). This circuit motif is reminiscent of the pattern of connectivity within models of associative neuronal networks, whose dynamics lead to the clustering of neuronal inputs to form a reduced set of abstract representations [4] (reviewed in [5]). The first way station in the temporal lobe contains the postrhinal and perirhinal cortices, followed by the medial and lateral entorhinal cortices. Of note, olfactory input—which, unlike other senses, has no spatial component to its representation—has direct input to the lateral entorhinal cortex [6]. The third structure is the hippocampus, which contains multiple substructures (Fig 1).Open in a separate windowFig 1Schematic view of the circuitry of the temporal lobe and its connections to other brain areas of relevance.Figure abstracted from published results [715]. Composite illustration by Julia Kuhl.The specific nature of signal transformation and neuronal computations within the hippocampus is largely an open issue that defines the agenda of a great many laboratories. Equally vexing is the nature of signal transformation as the output leaves the hippocampus and propagates back to regions in the neocortex (Fig 1)—including the medial prefrontal cortex, a site of sensory integration and decision-making—in order to influence perception and motor action. The current experimental data suggest that only some signals within the sensory stream propagate into and out of the hippocampus. What regulates communication with the hippocampus or, more generally, with structures within the temporal lobe? The results from studies in rats and mice suggest that the most parsimonious hypothesis, at least for rodents, involves the rhythmic nature of neuronal activity at the so-called θ-rhythm [16], a 5–10 Hz oscillation (reviewed in [17]). The origin of the rhythm is not readily localized to a single locus [10], but certainly involves input from the medial septum [17] (a member of the forebrain cholinergic system) as well as from the supramammillary nucleus [10,18] (a member of the hypothalamus). The medial septum projects broadly to targets in the hippocampus and entorhinal cortex (Fig 1) [10]. Many motor actions, such as the orofacial actions of sniffing, whisking, and licking, occur within the frequency range of the θ-rhythm [19,20]. Thus, sensory input that is modulated by rhythmic self-motion can, in principle, phase-lock with hippocampal activity at the θ-rhythm to ensure the coherent trafficking of information between the relevant neocortical regions and temporal lobe structures [2123].We now shift to the nature of orofacial sensory inputs, specifically whisking and sniffing, which are believed to dominate the world view of rodents [19]. Recent work identified a premotor nucleus in the ventral medulla, named the vibrissa region of the intermediate reticular zone, whose oscillatory output is necessary and sufficient to drive rhythmic whisking [24]. While whisking can occur independently of breathing, sniffing and whisking are synchronized in the curious and aroused animal [24,25], as the preBötzinger complex in the medulla [26]—the oscillator for inspiration—paces whisking at nominally 5–10 Hz through collateral projections [27]. Thus, for the purposes of reviewing evidence for the locking of orofacial sensory inputs to the hippocampal θ-rhythm, we confine our analysis to aroused animals that function with effectively a single sniff/whisk oscillator [28].What is the evidence for the locking of somatosensory signaling by the vibrissae to the hippocampal θ-rhythm? The first suggestion of phase locking between whisking and the θ-rhythm was based on a small sample size [29,30], which allowed for the possibility of spurious correlations. Phase locking was subsequently reexamined, using a relatively large dataset of 2 s whisking epochs, across many animals, as animals whisked in air [31]. The authors concluded that while whisking and the θ-rhythm share the same spectral band, their phases drift incoherently. Yet the possibility remained that phase locking could occur during special intervals, such as when a rat learns to discriminate an object with its vibrissae or when it performs a memory-based task. This set the stage for a further reexamination of this issue across different epochs in a rewarded task. Work from Diamond''s laboratory that is published in the current issue of PLOS Biology addresses just this point in a well-crafted experiment that involves rats trained to perform a discrimination task.Grion, Akrami, Zuo, Stella, and Diamond [32] trained rats to discriminate between two different textures with their vibrissae. The animals were rewarded if they turned to a water port on the side that was paired with a particular texture. Concurrent with this task, the investigators also recorded the local field potential in the hippocampus (from which they extracted the θ-rhythm), the position of the vibrissae (from which they extracted the evolution of phase in the whisk cycle), and the spiking of units in the vibrissa primary sensory cortex. Their first new finding is a substantial increase in the amplitude of the hippocampal field potential at the θ-rhythm frequency—approximately 10 Hz for the data of Fig 2A—during the two, approximately 0.5 s epochs when the animal approaches the textures and whisks against it. There is significant phase locking between whisking and the hippocampal θ-rhythm during both of these epochs (Fig 2B), as compared to a null hypothesis of whisking while the animal whisked in air outside the discrimination zone. Unfortunately, the coherence between whisking and the hippocampal θ-rhythm could not be ascertained during the decision, i.e., turn and reward epochs. Nonetheless, these data show that the coherence between whisking and the hippocampal θ-rhythm is closely aligned to epochs of active information gathering.Open in a separate windowFig 2Summary of findings on the θ-rhythm in a rat during a texture discrimination task, derived from reference [32]. (A) Spectrogram showing the change in spectral power of the local field potential in the hippocampal area CA1 before, during, and after a whisking-based discrimination task. (B) Summary index of the increase in coherence between the band-limited hippocampal θ-rhythm and whisking signals during approach of the rat to the stimulus and subsequent touch. The index reports sin(ϕHϕW)2+cos(ϕHϕW)2, where ɸH and ɸW are the instantaneous phase of the hippocampal and whisking signals, respectively, and averaging is over all trials and animals. (C) Summary indices of the increase in coherence between the band-limited hippocampal θ-rhythm and the spiking signal in the vibrissa primary sensory cortex (“barrel cortex”). The magnitude of the index for each neuron is plotted versus phase in the θ-rhythm. The arrows show the concentration of units around the mean phase—black arrows for the vector average across only neurons with significant phase locking (solid circles) and gray arrows for the vector average across all neurons (open and closed circles). The concurrent positions of the vibrissae are indicated. The vector average is statistically significant only for the approach (p < 0.0001) and touch (p = 0.04) epochs.The second finding by Grion, Akrami, Zuo, Stella, and Diamond [32] addresses the relationship between spiking activity in the vibrissa primary sensory cortex and the hippocampal θ-rhythm. The authors find that spiking is essentially independent of the θ-rhythm outside of the task (foraging in Fig 2C), similar to the result for whisking and the θ-rhythm (Fig 2B). They observe strong coherence between spiking and the θ-rhythm during the 0.5 s epoch when the animal approaches the textures (approach in Fig 2C), yet reduced (but still significant) coherence during the touch epoch (touch in Fig 2C). The latter result is somewhat surprising, given past work from a number of laboratories that observe spiking in the primary sensory cortex and whisking to be weakly yet significantly phase-locked during exploratory whisking [3337]. Perhaps overtraining leads to only a modest need for the transfer of sensory information to the hippocampus. Nonetheless, these data establish that phase locking of hippocampal and sensory cortical activity is essentially confined to the epoch of sensory gathering.Given the recent finding of a one-to-one locking of whisking and sniffing [24], we expect to find direct evidence for the phase locking of sniffing and the θ-rhythm. Early work indeed reported such phase locking [38] but, as in the case of whisking [29], this may have been a consequence of too small a sample and, thus, inadequate statistical power. However, Macrides, Eichenbaum, and Forbes [39] reexamined the relationship between sniffing and the hippocampal θ-rhythm before, during, and after animals sampled an odorant in a forced-choice task. They found evidence that the two rhythms phase-lock within approximately one second of the sampling epoch. We interpret this locking to be similar to that seen in the study by Diamond and colleagues (Fig 2B) [32]. All told, the combined data for sniffing and whisking by the aroused rodent, as accumulated across multiple laboratories, suggest that two oscillatory circuits—the supramammillary nucleus and medial septum complex that drives the hippocampal θ-rhythm and the preBötzinger complex that drives inspiration and paces the whisking oscillator during sniffing (Fig 1)—can phase-lock during epochs of gathering sensory information and likely sustain working memory.What anatomical pathway can lead to phase locking of these two oscillators? The electrophysiological study of Tsanov, Chah, Reilly, and O’Mara [9] supports a pathway from the medial septum, which is driven by the supramammillary nucleus, to dorsal pontine nuclei in the brainstem. The pontine nucleus projects to respiratory nuclei and, ultimately, the preBötzinger oscillator (Fig 1). This unidirectional pathway can, in principle, entrain breathing and whisking. Phase locking is not expected to occur during periods of basal breathing, when the breathing rate and θ-rhythm occur at highly incommensurate frequencies. However, it remains unclear why phase locking occurs only during a selected epoch of a discrimination task, whereas breathing and the θ-rhythm occupy the same frequency band during the epochs of approach, as well as touch-based target selection (Fig 2A). While a reafferent pathway provides the rat with information on self-motion of the vibrissae (Fig 1), it is currently unknown whether that information provides feedback for phase locking.A seeming requirement for effective communication between neocortical and hippocampal processing is that phase locking must be achieved at all possible phases of the θ-rhythm. Can multiple phase differences between sensory signals and the hippocampal θ-rhythm be accommodated? Two studies report that the θ-rhythm undergoes a systematic phase-shift along the dorsal–ventral axis of the hippocampus [40,41], although the full extent of this shift is only π radians [41]. In addition, past work shows that vibrissa input during whisking is represented among all phases of the sniff/whisk cycle, at levels from primary sensory neurons [42,43] through thalamus [44,45] and neocortex [3337], with a bias toward retraction from the protracted position. A similar spread in phase occurs for olfactory input, as observed at the levels of the olfactory bulb [46] and cortex [47]. Thus, in principle, the hippocampus can receive, transform, and output sensory signals that arise over all possible phases in the sniff/whisk cycle. In this regard, two signals that are exactly out-of-phase by π radians can phase-lock as readily as signals that are in-phase.What are the constraints for phase locking to occur within the observed texture identification epochs? For a linear system, the time to lock between an external input and hippocampal theta depends on the observed spread in the spectrum of the θ-rhythm. This is estimated as Δf ~3 Hz (half-width at half-maximum amplitude), implying a locking time on the order of 1/Δf ~0.3 s. This is consistent with the approximate one second of enhanced θ-rhythm activity observed in the study by Diamond and colleagues (Fig 2A) [32] and in prior work [39,48] during a forced-choice task with rodents.Does the θ-rhythm also play a role in the gating of output from the hippocampus to areas of the neocortex? Siapas, Lubenov, and Wilson [48] provided evidence that hippocampal θ-rhythm phase-locks to electrical activity in the medial prefrontal cortex, a site of sensory integration as well as decision-making. Subsequent work [4951] showed that the hippocampus drives the prefrontal cortex, consistent with the known unidirectional connectivity between Cornu Ammonis area 1 (CA1) of the hippocampus and the prefrontal cortex [11] (Fig 1). Further, phase locking of hippocampal and prefrontal cortical activity is largely confined to the epoch of decision-making, as opposed to the epoch of sensory gathering. Thus, over the course of approximately one second, sensory information flows into and then out of the hippocampus, gated by phase coherence between rhythmic neocortical and hippocampal neuronal activity.It is of interest that the medial prefrontal cortex receives input signals from sensory areas in the neocortex [52] as well as a transformed version of these input signals via the hippocampus (Fig 1). Yet it remains to be determined if this constitutes a viable hub for the comparison of the original and transformed signals. In particular, projections to the medial prefrontal cortex arise from the ventral hippocampus [2], while studies on the phase locking of hippocampal θ-rhythm to prefrontal neocortical activity were conducted in dorsal hippocampus, where the strength of the θ-rhythm is strong compared to the ventral end [53]. Therefore, similar recordings need to be performed in the ventral hippocampus. An intriguing possibility is that the continuous phase-shift of the θ-rhythm along the dorsal to the ventral axis of the hippocampus [40,41] provides a means to encode the arrival of novel inputs from multiple sensory modalities relative to a common clock.A final issue concerns the locking between sensory signals and hippocampal neuronal activity in species that do not exhibit a continuous θ-rhythm, with particular reference to bats [5456] and primates [5760]. One possibility is that only the up and down swings of neuronal activity about a mean are important, as opposed to the rhythm per se. In fact, for animals in which orofacial input plays a relatively minor role compared to rodents, such a scheme of clocked yet arrhythmic input may be a necessity. In this case, the window of processing is set by a stochastic interval between transitions, as opposed to the periodicity of the θ-rhythm. This may imply that up/down swings of neuronal activity may drive hippocampal–neocortical communications in all species, with communication mediated via phase-locked oscillators in rodents and via synchronous fluctuations in bats and primates. The validity of this scheme and its potential consequence on neuronal computation remains an open issue and a focus of ongoing research.  相似文献   

8.
1. Intrasomal recordings of potentials produced by current stimulation in vivo were made from 24 (A-) touch and 19 vibrotactile neurons in the trigeminal ganglion of 29 crotaline snakes, Trimeresurus flavoviridis. 2. Usually touch neurons responded with a single action potential at the beginning of a prolonged depolarizing pulse, whereas all vibrotactile neurons responded with multiple spikes.3. The electrophysiological parameters examined were membrane potential, threshold current, input resistance and capacitance, time constant, rebound latency, and its threshold current. Touch neurons had higher input resistance (and lower input capacitance) than vibrotactile neurons.4. In conclusion, current injection, which elicits a single or multiple spiking, seems a useful way to separate touch neurons from vibrotactile neurons without confirming the receptor response, and some membrane properties are also specific to the sensory modality.  相似文献   

9.
This Formal Comment provides clarifications on the authors’ recent estimates of global bacterial diversity and the current status of the field, and responds to a Formal Comment from John Wiens regarding their prior work.

We welcome Wiens’ efforts to estimate global animal-associated bacterial richness and thank him for highlighting points of confusion and potential caveats in our previous work on the topic [1]. We find Wiens’ ideas worthy of consideration, as most of them represent a step in the right direction, and we encourage lively scientific discourse for the advancement of knowledge. Time will ultimately reveal which estimates, and underlying assumptions, came closest to the true bacterial richness; we are excited and confident that this will happen in the near future thanks to rapidly increasing sequencing capabilities. Here, we provide some clarifications on our work, its relation to Wiens’ estimates, and the current status of the field.First, Wiens states that we excluded animal-associated bacterial species in our global estimates. However, thousands of animal-associated samples were included in our analysis, and this was clearly stated in our main text (second paragraph on page 3).Second, Wiens’ commentary focuses on “S1 Text” of our paper [1], which was rather peripheral, and, hence, in the Supporting information. S1 Text [1] critically evaluated the rationale underlying previous estimates of global bacterial operational taxonomic unit (OTU) richness by Larsen and colleagues [2], but the results of S1 Text [1] did not in any way flow into the analyses presented in our main article. Indeed, our estimates of global bacterial (and archaeal) richness, discussed in our main article, are based on 7 alternative well-established estimation methods founded on concrete statistical models, each developed specifically for richness estimates from multiple survey data. We applied these methods to >34,000 samples from >490 studies including from, but not restricted to, animal microbiomes, to arrive at our global estimates, independently of the discussion in S1 Text [1].Third, Wiens’ commentary can yield the impression that we proposed that there are only 40,100 animal-associated bacterial OTUs and that Cephalotes in particular only have 40 associated bacterial OTUs. However, these numbers, mentioned in our S1 Text [1], were not meant to be taken as proposed point estimates for animal-associated OTU richness, and we believe that this was clear from our text. Instead, these numbers were meant as examples to demonstrate how strongly the estimates of animal-associated bacterial richness by Larsen and colleagues [2] would decrease simply by (a) using better justified mathematical formulas, i.e., with the same input data as used by Larsen and colleagues [2] but founded on an actual statistical model; (b) accounting for even minor overlaps in the OTUs associated with different animal genera; and/or (c) using alternative animal diversity estimates published by others [3], rather than those proposed by Larsen and colleagues [2]. Specifically, regarding (b), Larsen and colleagues [2] (pages 233 and 259) performed pairwise host species comparisons within various insect genera (for example, within the Cephalotes) to estimate on average how many bacterial OTUs were unique to each host species, then multiplied that estimate with their estimated number of animal species to determine the global animal-associated bacterial richness. However, since their pairwise host species comparisons were restricted to congeneric species, their estimated number of unique OTUs per host species does not account for potential overlaps between different host genera. Indeed, even if an OTU is only found “in one” Cephalotes species, it might not be truly unique to that host species if it is also present in members of other host genera. To clarify, we did not claim that all animal genera can share bacterial OTUs, but instead considered the implications of some average microbiome overlap (some animal genera might share no bacteria, and other genera might share a lot). The average microbiome overlap of 0.1% (when clustering bacterial 16S sequences into OTUs at 97% similarity) between animal genera used in our illustrative example in S1 Text [1] is of course speculative, but it is not unreasonable (see our next point). A zero overlap (implicitly assumed by Larsen and colleagues [2]) is almost certainly wrong. One goal of our S1 Text [1] was to point out the dramatic effects of such overlaps on animal-associated bacterial richness estimates using “basic” mathematical arguments.Fourth, Wiens’ commentary could yield the impression that existing data are able to tell us with sufficient certainty when a bacterial OTU is “unique” to a specific animal taxon. However, so far, the microbiomes of only a minuscule fraction of animal species have been surveyed. One can thus certainly not exclude the possibility that many bacterial OTUs currently thought to be “unique” to a certain animal taxon are eventually also found in other (potentially distantly related) animal taxa, for example, due to similar host diets and or environmental conditions [47]. As a case in point, many bacteria in herbivorous fish guts were found to be closely related to bacteria in mammals [8], and Song and colleagues [6] report that bat microbiomes closely resemble those of birds. The gut microbiome of caterpillars consists mostly of dietary and environmental bacteria and is not species specific [4]. Even in animal taxa with characteristic microbiota, there is a documented overlap across host species and genera. For example, there are a small number of bacteria consistently and specifically associated with bees, but these are found across bee genera at the level of the 99.5% similar 16S rRNA OTUs [5]. To further illustrate that an average microbiome overlap between animal taxa at least as large as the one considered in our S1 Text (0.1%) [1] is not unreasonable, we analyzed 16S rRNA sequences from the Earth Microbiome Project [6,9] and measured the overlap of microbiota originating from individuals of different animal taxa. We found that, on average, 2 individuals from different host classes (e.g., 1 mammalian and 1 avian sample) share 1.26% of their OTUs (16S clustered at 100% similarity), and 2 individuals from different host genera belonging to the same class (e.g., 2 mammalian samples) share 2.84% of their OTUs (methods in S1 Text of this response). A coarser OTU threshold (e.g., 97% similarity, considered in our original paper [1]) would further increase these average overlaps. While less is known about insect microbiomes, there is currently little reason to expect a drastically different picture there, and, as explained in our S1 Text [1], even a small average microbiome overlap of 0.1% between host genera would strongly limit total bacterial richness estimates. The fact that the accumulation curve of detected bacterial OTUs over sampled insect species does not yet strongly level off says little about where the accumulation curve would asymptotically converge; rigorous statistical methods, such as the ones used for our global estimates [1], would be needed to estimate this asymptote.Lastly, we stress that while the present conversation (including previous estimates by Louca and colleagues [1], Larsen and colleagues [2], Locey and colleagues [10], Wiens’ commentary, and this response) focuses on 16S rRNA OTUs, it may well be that at finer phylogenetic resolutions, e.g., at bacterial strain level, host specificity and bacterial richness are substantially higher. In particular, future whole-genome sequencing surveys may well reveal the existence of far more genomic clusters and ecotypes than 16S-based OTUs.  相似文献   

10.
Circadian rhythms are an essential property of life on Earth. In mammals, these rhythms are coordinated by a small set of neurons, located in the suprachiasmatic nuclei (SCN). The environmental light/dark cycle synchronizes (entrains) the SCN via a distinct pathway, originating in a subset of photosensitive retinal ganglion cells (pRGCs) that utilize the photopigment melanopsin (OPN4). The pRGCs are also innervated by rods and cones and, so, are both endogenously and exogenously light sensitive. Accumulating evidence has shown that the circadian system is sensitive to ultraviolet (UV), blue, and green wavelengths of light. However, it was unclear whether colour perception itself can help entrain the SCN. By utilizing both behavioural and electrophysiological recording techniques, Walmsley and colleagues show that multiple photic channels interact and enhance the capacity of the SCN to synchronize to the environmental cycle. Thus, entrainment of the circadian system combines both environmental irradiance and colour information to ensure that internal and external time are appropriately aligned.Light is sensed by three classes of retinal photoreceptors. In the outer retina, light is detected by rod and cone photoreceptors; in the inner retina a small number of photosensitive retinal ganglion cells (pRGCs) express the photopigment melanopsin, which confers photosensitivity to these neurons. The signals derived from the various photoreceptors are important for visual and nonvisual tasks. The generation of visual images is primarily a function of the classical rod and cone photoreceptors, while the classical photoreceptors together with melanopsin are involved in nonvisual tasks, such as pupillary reflexes and the synchronization of our circadian clock to the environmental light-dark cycle. The discovery of non-rod, non-cone photoreceptors [1] and the demonstration that they utilize the photopigment melanopsin [2] led to the general and unfortunate notion that melanopsin is the major—if not the only—photopigment that contributes to photoentrainment and that this sensory task is monochromatic, with no role for colour discrimination. The article of Walmsley et al. [3] addresses this misconception and presents evidence for a role for colour detection in photoentrainment.These findings are in accordance with recent publications indicating that not only melanopsin but also other photopigments contribute to entrainment [49]. The consensus from these studies is that rods are most important for photoentrainment at low light intensities; cone photoreceptors transduce light information to the suprachiasmatic nuclei (SCN) at intermediate and high irradiances and are able to detect sudden changes in light intensity, whilst melanopsin detects light at high irradiances and may be of specific importance for the integration of light information over longer periods of time.While it is true that the different photoreceptors are sensitive across a range of different light intensities, they are also maximally sensitive to different colours or wavelengths of light, and as a result, each class of photoreceptor has a different peak sensitivity. Rod photoreceptors have their peak sensitivity at 498 nm light (which would appear to us as green), melanopsin is maximally sensitive to 480 nm (blue) light, and most mammals express two distinct classes of cone photoreceptors, which in the majority of rodents are maximally sensitive to approximately 360 nm (UV) and approximately508 nm (green) light respectively. As a consequence, the different photoreceptive systems not only show differences in their absolute sensitivities, but in addition, they are differentially stimulated by different wavelengths of light. Theoretically, this characteristic difference in the spectral sensitivity of the photoreceptors could add to the detection of light intensities over the day-night cycle and thereby to the capacity of the SCN to adjust to it. Such a possibility was first suggested by Foster and colleagues [10] and shown for fish by Pauers and colleagues [11].Walmsley et al. make use of a sophisticated experimental design to show the functional role of colour for the circadian system. Environmental light measurements were performed in Manchester, which lies 53 degrees north of the equator, as a function of solar angle relative to the horizon. Measurements were performed between August and October of 2005. The spectral measurements showed a reduction of irradiance and an increasing amount of short-wavelength light during twilight when the sun is below the horizon (Fig 1). This is a consequence of the differential scattering of shorter wavelengths of light by particles in the atmosphere and filtering of long wavelength light by the Chappuis band of the ozone layer. Based on the known spectral sensitivities of the short- and medium-wavelength—sensitive cone opsins, the excitation of the two pigments at different solar angles was calculated. Relative to the medium-wavelength—sensitive cone opsin, excitation of the short-wavelength—sensitive cone opsin decreases with increasing elevation of the sun above the horizon. The spectral composition of light reaching the earth shows less day-to-day variability in spectral composition than in irradiance, and thus, it may have a high predictive value about the position of the sun, as originally predicted by Foster (e.g., 2001).Open in a separate windowFig 1Colour detection by the circadian system.Colour detection by the circadian system. (A) Spectral changes in light reaching the earth during twilight. At negative solar angles, short wavelength light is dominant, while at positive solar angles, long wavelength light is dominant. (B) Schematic overview of light signalling to the SCN resulting in entrainment to a light-dark cycle. Light is the main entraining signal that adjusts the endogenous period length to the day-night cycle. Electrical activity of SCN neurons is the main output signal of the SCN, which leads to temporal regulation of behavioural activity. (C) Schematic depiction of two types of light-responsive neurons observed in the SCN as shown by Walmsley and colleagues: the colour-sensitive neuron (upper traces) and the brightness-sensitive neurons (lower traces). Image credit: Hester van Diepen.The information about changes in spectral composition of light over the day were used to simulate twilight in laboratory conditions to study whether mice make use of these changes in colour as an estimation of the time of the day. Electrophysiological recordings from SCN neurons revealed that a subpopulation of light-responsive neurons is sensitive to changes in the spectral composition of daylight. These neurons were detected based on the presence of a response to changes in spectral composition of the light source, consisting of three light-emitting diodes (LEDs) with narrow band emittance at 365 nm, 460 nm, and 600 nm. These wavelengths maximally stimulate the short-wavelength, UV sensitive cone, melanopsin, and a red knock-in cone that substitutes the normal green cone and enhances discrimination between photoreceptors.In addition to being sensitive to spectral composition changes, some neurons showed colour-opponency in response to selective activation of short-wavelength—sensitive opsins versus long-wavelength—sensitive opsins or vice versa (Fig 1). Cone photoreceptors display colour-opponency, most likely by combining signals from separate classes of cone photoreceptors in an opposing way [12,13]. The SCN may make use of this antagonistic effect by determination of the relative activation of the cone photoreceptors to various wavelengths of light. Since the two classes of photoreceptors in the mammalian retina are specifically sensitive to short-wavelength and long-wavelength light, the blue-yellow colour discrimination is a reliable way in which the SCN can detect transitions from twilight to daylight. In fact, behavioural experiments in mice showed that changes in colour are required for appropriate biological timing with respect to the solar cycle.It is of utmost importance that the SCN is appropriately aligned with the environmental light-dark cycle. In rodents, the SCN consists of about 20,000 cell autonomous oscillators that are capable of producing circadian rhythms with a period deviating slightly from 24 hours. For proper function, the cells have to be mutually synchronized, and as an ensemble they should synchronize to the environmental cycle. Direct retinal input to the SCN, via the retinohypothaloamic tract (RHT), originates exclusively from pRGCs [14]. The pRGCs can be activated by rod and cone photoreceptors via synaptic connections to the outer retina [15]. Upon activation by light, photoreceptors undergo a transformational change from the inactive state to the active state, which results in a signalling cascade that ultimately leads to the generation of action potentials in the retinal ganglion cells and in the optic tract. The initial response of the classical photoreceptors is a hyperpolarization, while the conformational change of melanopsin leads to a depolarization. The present view, emerging from the various studies, is that light information reaches the SCN via all retinal photoreceptive systems. The ability of SCN neurons to not only determine the amount of light but also the wavelength of light by comparison of the relative activation of the different photoreceptors provides the SCN with additional information. The detection of changes in spectral composition may be an additive way to detect the time of the day-night cycle, as compared to irradiance detection alone. The amount of light perceived by the SCN can vary over the day, caused by covering of the sun with clouds or hiding of a mammal in its burrow [16]. The spectral composition of light during the lower light intensity time point will not change. Therefore, this perception system provides a refinement in the ability of the SCN to estimate time of day, which would not have been possible by the estimation of irradiance per se. As at least 90% of mammalian species can discriminate colour on the basis of at least two classes of cone opsins [17], it would be interesting to investigate to what degree other mammals also make use of colour to tell time of day.  相似文献   

11.
Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.Coral reefs constitute one of the most diverse, socioeconomically important, and threatened ecosystems in the world [13]. Coral reefs harbor thousands of species [4] and provide food and livelihoods for millions of people while safeguarding coastal populations from extreme weather disturbances [2,3]. Unfortunately, the world’s coral reefs are rapidly degrading [13], with ~19% of the total coral reef area effectively lost [3] and 60% to 75% under direct human pressures [3,5,6]. Climate change aside, this decline has been attributed to threats emerging from widespread human expansion in coastal areas, which has facilitated exploitation of local resources, assisted colonization by invasive species, and led to the loss and degradation of habitats directly and indirectly through fishing and runoff from agriculture and sewage systems [13,57]. In efforts to protect the world’s coral reefs, remote islands and atolls are often seen as reefs of “hope,” as their isolation and uninhabitability provide de facto protection against direct human stressors, and may help impacted reefs through replenishment [5,6]. Such isolated reefs may, however, still be vulnerable because of their geopolitical and military importance (e.g., allowing expansion of exclusive economic zones and providing strategic bases for military operations). Here we document patterns of reclamation (here defined as creating new land by filling submerged areas) of atolls in the South China Sea, which have resulted in considerable loss of coral reefs. We show that conditions are ripe for reclamation of more atolls, highlighting the need for international cooperation in the protection of these atolls before more unique and ecologically important biological assets are damaged, potentially irreversibly so.Studies of past reclamations and reef dredging activities have shown that these operations are highly deleterious to coral reefs [8,9]. First, reef dredging affects large parts of the surrounding reef, not just the dredged areas themselves. For example, 440 ha of reef was completely destroyed by dredging on Johnston Island (United States) in the 1960s, but over 2,800 ha of nearby reefs were also affected [10]. Similarly, at Hay Point (Australia) in 2006 there was a loss of coral cover up to 6 km away from dredging operations [11]. Second, recovery from the direct and indirect effects of dredging is slow at best and nonexistent at worst. In 1939, 29% of the reefs in Kaneohe Bay (United States) were removed by dredging, and none of the patch reefs that were dredged had completely recovered 30 years later [12]. In Castle Harbour (Bermuda), reclamation to build an airfield in the early 1940s led to limited coral recolonization and large quantities of resuspended sediments even 32 years after reclamation [13]; several fish species are claimed extinct as a result of this dredging [14,15]. Such examples and others led Hatcher et al. [8] to conclude that dredging and land clearing, as well as the associated sedimentation, are possibly the most permanent of anthropogenic impacts on coral reefs.The impacts of dredging for the Spratly Islands are of particular concern because the geographical position of these atolls favors connectivity via stepping stones for reefs over the region [1619] and because their high biodiversity works as insurance for many species. In an extensive review of the sparse and limited data available for the region, Hughes et al. [20] showed that reefs on offshore atolls in the South China Sea were overall in better condition than near-shore reefs. For instance, by 2004 they reported average coral covers of 64% for the Spratly Islands and 68% for the Paracel Islands. By comparison, coral reefs across the Indo-Pacific region in 2004 had average coral covers below 25% [21]. Reefs on isolated atolls can still be prone to extensive bleaching and mortality due to global climate change [22] and, in the particular case of atolls in the South China Sea, the use of explosives and cyanine [20]. However, the potential for recovery of isolated reefs to such stressors is remarkable. Hughes et al. [20] documented, for instance, how coral cover in several offshore reefs in the region declined from above 80% in the early 1990s to below 6% by 1998 to 2001 (due to a mixture of El Niño and damaging fishing methods that make use of cyanine and explosives) but then recovered to 30% on most reefs and up to 78% in some reefs by 2004–2008. Another important attribute of atolls in the South China Sea is the great diversity of species. Over 6,500 marine species are recorded for these atolls [23], including some 571 reef coral species [24] (more than half of the world’s known species of reef-building corals). The relatively better health and high diversity of coral reefs in atolls over the South China Sea highlights the uniqueness of such reefs and the important roles they may play for reefs throughout the entire region. Furthermore, these atolls are safe harbor for some of the last viable populations of highly threatened species (e.g., Bumphead Parrotfish [Bolbometopon muricatum] and several species of sawfishes [Pristis, Anoxypristis]), highlighting how dredging in the South China Sea may threaten not only species with extinction but also the commitment by countries in the region to biodiversity conservation goals such as the Convention of Biological Diversity Aichi Targets and the United Nations Sustainable Development Goals.Recently available remote sensing data (i.e., Landsat 8 Operational Land Imager and Thermal Infrared Sensors Terrain Corrected images) allow quantification of the sharp contrast between the gain of land and the loss of coral reefs resulting from reclamation in the Spratly Islands (Fig 1). For seven atolls recently reclaimed by China in the Spratly Islands (names provided in Fig 1D, S1 Data for details); the area of reclamation is the size of visible areas in Landsat band 6, as prior to reclamation most of the atolls were submerged, with the exception of small areas occupied by a handful of buildings on piers (note that the amount of land area was near zero at the start of the reclamation; Fig 1C, S1 Data). The seven reclaimed atolls have effectively lost ~11.6 km2 (26.9%) of their reef area for a gain of ~10.7 km2 of land (i.e., >75 times increase in land area) from February 2014 to May 2015 (Fig 1C). The area of land gained was smaller than the area of reef lost because reefs were lost not only through land reclamation but also through the deepening of reef lagoons to allow boat access (Fig 1B). Similar quantification of reclamation by other countries in the South China Sea (Fig 1Reclamation leads to gains of land in return for losses of coral reefs: A case example of China’s recent reclamation in the Spratly Islands.Table 1List of reclaimed atolls in the Spratly Islands and the Paracel Islands.The impacts of reclamation on coral reefs are likely more severe than simple changes in area, as reclamation is being achieved by means of suction dredging (i.e., cutting and sucking materials from the seafloor and pumping them over land). With this method, reefs are ecologically degraded and denuded of their structural complexity. Dredging and pumping also disturbs the seafloor and can cause runoff from reclaimed land, which generates large clouds of suspended sediment [11] that can lead to coral mortality by overwhelming the corals’ capacity to remove sediments and leave corals susceptible to lesions and diseases [7,9,25]. The highly abrasive coralline sands in flowing water can scour away living tissue on a myriad of species and bury many organisms beyond their recovery limits [26]. Such sedimentation also prevents new coral larvae from settling in and around the dredged areas, which is one of the main reasons why dredged areas show no signs of recovery even decades after the initial dredging operations [9,12,13]. Furthermore, degradation of wave-breaking reef crests, which make reclamation in these areas feasible, will result in a further reduction of coral reefs’ ability to (1) self-repair and protect against wave abrasion [27,28] (especially in a region characterized by typhoons) and (2) keep up with rising sea levels over the next several decades [29]. This suggests that the new islands would require periodic dredging and filling, that these reefs may face chronic distress and long-term ecological damage, and that reclamation may prove economically expensive and impractical.The potential for land reclamation on other atolls in the Spratly Islands is high, which necessitates the urgent development of cooperative management of disputed territories in the South China Sea. First, the Spratly Islands are rich in atolls with similar characteristics to those already reclaimed (Fig 1D); second, there are calls for rapid development of disputed territories to gain access to resources and increase sovereignty and military strength [30]; and third, all countries with claims in the Spratly Islands have performed reclamation in this archipelago (20]. One such possibility is the generation of a multinational marine protected area [16,17]. Such a marine protected area could safeguard an area of high biodiversity and importance to genetic connectivity in the Pacific, in addition to promoting peace in the region (extended justification provided by McManus [16,17]). A positive precedent for the creation of this protected area is that of Antarctica, which was also subject to numerous overlapping claims and where a recently renewed treaty froze national claims, preventing large-scale ecological damage while providing environmental protection and areas for scientific study. Development of such a legal framework for the management of the Spratly Islands could prevent conflict, promote functional ecosystems, and potentially result in larger gains (through spillover, e.g. [31]) for all countries involved.  相似文献   

12.
Summary To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas comprising spiking neurons. The peripheral area P is modeled similar to the primary visual cortex, while the central area C is modeled as an associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, spikes corresponding to stimulus representations in P are synchronized only locally (slow state). Feedback from C can induce fast oscillations and an increase of synchronization ranges (fast state). Presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast state, where neurons representing the same object are simultaneously in the fast state. We relate our simulation results to various phenomena observed in neurophysiological experiments, such as stimulus-dependent synchronization of fast oscillations, synchronization on different time scales, ongoing activity, and attention-dependent neural activity.  相似文献   

13.
Two articles published earlier this year in the International Journal of Epidemiology [1,2] have re-ignited the debate over the World Health Organization’s long-held recommendation of mass-treatment of intestinal helminths in endemic areas. In this note, we discuss the content and relevance of these articles to the policy debate, and review the broader research literature on the educational and economic impacts of deworming. We conclude that existing evidence still indicates that mass deworming is a cost-effective health investment for governments in low-income countries where worm infections are widespread.  相似文献   

14.
Peter Figueroa and co-authors advocate for equity in the worldwide provision of COVID-19 vaccines.

Many may not be aware of the full extent of global inequity in the rollout of Coronavirus Disease 2019 (COVID-19) vaccines in response to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. As of June 20, 2021, only 0.9% of those living in low-income countries and less than 10% of those in low- and middle-income countries (LMICs) had received at least 1 dose of a COVID-19 vaccine compared with 43% of the population living in high-income countries (HICs) [1] (Fig 1). Only 2.4% of the population of Africa had been vaccinated compared with 41% of North America and 38% of Europe [1,2] (S1 Fig). Primarily due to the inability to access COVID-19 vaccines, less than 10% of the population in as many as 85 LMICs had been vaccinated compared with over 60% of the population in 26 HICs [1]. Only 10 countries account for more than 75% of all COVID-19 vaccines administered [3]. This striking and ongoing inequity has occurred despite the explicit ethical principles affirming equity of access to COVID-19 vaccines articulated in WHO SAGE values framework [4,5] prepared in mid-2020, well prior to the availability of COVID-19 vaccines.Open in a separate windowFig 1Proportion of people vaccinated with at least 1 dose of COVID-19 vaccine by income (April 14 to June 23, 2021).Note: Data on China appeared on the database on June 9, hence the jump in upper middle-income countries. COVID-19, Coronavirus Disease 2019. Source: https://ourworldindata.org/covid-vaccinations.The COVID-19 pandemic highlights the grave inequity and inadequacy of the global preparedness and response to serious emerging infections. The establishment of the Coalition for Epidemic Preparedness Innovations (CEPI) in 2018, the Access to COVID-19 Tools Accelerator (ACT-A), and the COVID-19 Vaccines Global Access (COVAX) Facility in April 2020 and the rapid development of COVID-19 vaccines were all positive and extraordinary developments [6]. The COVAX Facility, as of June 2021, has delivered approximately 83 million vaccine doses to 75 countries, representing approximately 4% of the global supply, and one-fifth of this was for HICs [7]. The COVAX Facility has been challenged to meet its supply commitments to LMICs due to insufficient access to doses of COVID-19 vaccines with the prerequisite WHO emergency use listing (EUL) or, under exceptional circumstances, product approval by a stringent regulatory authority (SRA) [8,9]. Because of the anticipated insufficient COVID-19 vaccine supply through the COVAX Facility, the majority of nonvaccine-producing LMIC countries made the decision, early in the COVID-19 pandemic, to secure and use vaccines produced in China or Russia prior to receipt of WHO EUL or SRA approval. Most of the vaccines used in LMICs as of June 20, 2021 (nearly 1.5 billion doses of the 2.6 billion doses administered) were neither WHO EUL or SRA approved at the time they were given [10]. This may raise possible concerns with respect to the effectiveness, safety, and acceptability of individual vaccines used by many countries [8,9].  相似文献   

15.
The instantaneous state of a neural network consists of both the degree of excitation of each neuron the network is composed of and positions of impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are registered, but not the state of communication lines. But future spiking moments depend essentially on the past positions of impulses in the lines. This suggests, that the sequence of intervals between firing moments (inter-spike intervals, ISIs) in the network could be non-Markovian.  相似文献   

16.
17.
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project''s complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.
This Education article is part of the Education Series.
Hands-on robotic and video game design projects and competitions are widespread and have proven particularly effective at sparking interest and teaching K–12 and college students in mechatronics, computer science, and Science, Technology, Engineering, and Mathematics (STEM). Furthermore, these projects foster teamwork, self-learning, design, and presentation skills [1,2]. Such playful and interactive media that provide fun, creative, open-ended learning experiences for all ages are arguably underdeveloped in the life sciences. Most hands-on education occurs in traditionally structured laboratory courses with a few exceptions like the International Genetically Engineered Machine (iGEM) competition [3]. Furthermore, there is an increasing need to bring the traditional engineering and life science disciplines together. In order to fill these gaps, we present the concept of a biotic game design project to foster student development in a broad set of engineering and life science skills in an integrated manner (Fig. 1). Though we primarily discuss our specific implementation as a cornerstone project-based class [4], alternative implementations are possible to motivate a variety of learning goals under various constraints such as student age and cost (see supplements for all course material).Open in a separate windowFig 1We developed a bioengineering devices course that employed biotic game design as a motivating project scheme. A: Biotic games enable human players to interact with cells. B: Conceptual overview of a biotic game setup. C: Students built and played biotic games. Image credits: A C64 joystick by Speed-link, 1984 (http://commons.wikimedia.org/wiki/File:Joystick_black_red_petri_01.svg); Euglena viridis by C. G. Ehrenberg, 1838; C Photo, N. J. C.Biotic games are games that operate on biological processes (Fig. 1) [5]. The biotic games we present here involve the single-celled phototactic eukaryote, Euglena gracilis. These microscopic organisms are housed in a microfluidic chip and are displayed in a magnified image on a video screen. Players interact with these cells by modulating the intensity and direction of light perpendicular to the microfluidic chip via a joystick, thereby influencing the cells’ phototactic motion. Software tracks the position of individual euglena with respect to virtual objects overlaid on the screen, creating myriad opportunities for creative game design and play. For example, in a simple game, points might be scored when a cell hits a virtual box (see S1 Video).The biotic game design project we developed was intended to motivate all the broad categories of theoretical and hands-on skills for creating any integrated instrument intended to house and to interface with biological materials, i.e., optics, electronics, sensing, actuation, microfluidics, fabrication, image processing, programming, and creative design. We termed the synthesis of these skills “biotics” in analogy to mechatronics. Our intended audience for this course was bioengineering undergraduate students at Stanford University who already had some programming experience but little to no experience in device design, fabrication, and integration. We also incorporated bioethics into the curriculum to emphasize the social responsibility of every engineer and demonstrate the potential for the biotic game project to motivate multiple fields. The course we taught spanned ten weeks, divided roughly equally into a set of technical units and the biotic game project, with two 4-hour lab sections and a single 1.5-hour lecture each week. For details and all course documents, please refer to the supplemental material.The technical section of the course focused on developing hands-on skills and theoretical understanding related to devices in a conventionally structured laboratory setting. We introduced students to fundamental electronics concepts and components such as voltage, current, resistors, capacitors, LEDs, filters, operational amplifiers, motors, microcontrollers (Arduino Uno), and breadboards. We followed a similar traditional approach in introducing optics, presenting the thin lens equation, ray tracing, conjugate planes, basic optical system design, and Köhler illumination. We covered additional topics in less detail: MATLAB programming, particle tracking, computer-aided design (CAD), fabrication, and microfluidics (learning objectives are provided at the beginning of each unit in the supplemental material).During the project-based section, students built their own biotic games. We left specific choices of implementation, architecture, and design to the students to encourage creativity and exploration but required students to revisit the technical skills they learned in the first section by integrating some specific requirements into their games (Fig. 2). Students built a bright field microscope with Köhler illumination and projected their images onto a webcam (optics). Glass and polydimethylsiloxane (PDMS) components comprised the microfluidic chip (microfluidics) and housed the euglena (microbiology). The holder for the chip and euglena-steering LEDs was designed in Solidworks (CAD) and 3-D printed (fabrication). The students constructed a polycarbonate housing for the game controller using a band saw and drill press (fabrication). The students revisited electronic breadboarding and soldering when creating the electronic circuits to communicate between the LEDs, joystick, microcontroller, and computer. Finally, they used MATLAB to program the microcontroller, implement real time image recognition, and provide the user interface for the game experience (image processing and programming).Open in a separate windowFig 2Biotic game-based courses encourage students to integrate a versatile set of relevant STEM topics.Image credits: Taken by N. J. C. (credit for the work and artifacts to the students who took the course).We challenged students to consider the ethical implications [6] of manipulating life in a game context before building their projects. Although phototaxis experiments with euglena are commonplace in education, and have hitherto raised no ethical concerns, the equivalent manipulation in the form of a game warrants its own ethical analysis as provided by Harvey et al. [7]. The students read and discussed this paper, then wrote a 200-word essay on whether they found it permissible or not to make and play biotic games. Students had the choice to switch to a nongame project of equivalent complexity. All students found euglena-based games permissible, pointing out that “they are nonsentient and cannot feel pain,” followed by a diverse range of considerations such as “the euglena are still free to act as they please,” “there needs to be an educational intention,” or “a pet…provides a way…to work on responsibility and caring.” Based on further student-initiated discussions that spontaneously emerged throughout the course, we believe that biotic games are effective in providing a stimulating, student-relevant, in-class context for bioethics.We motivated the game design project to the students as having educational potential at two levels, i.e., learning by building and learning by playing; we lectured them about the needs and opportunities for new approaches to K–12 STEM education [8,9]. The students were then asked to consider building a game that had educational value for the player. Educational value has many aspects, which was reflected in students’ statements regarding their intended educational outcomes for their games on their course project websites. These ranged from more factual learning objectives (“learn about…” “…inner working,” “…structural detail,” “… light responses,” “…euglena behavior”) to objectives affecting attitude (“spark interest,” “generate fascination,” “encourage to explore,” “respect for life”). We also had a game designer give a guest lecture to the students. For pragmatic reasons, we requested the students keep games very simple (ideally having just a single in-game objective) and cap game duration at one minute. Before, during, and after their projects, students received feedback from instructors as well as from their peers on their games from technical and user perspectives.The games that the students ultimately produced were diverse and creative (Fig. 2 and S1 Video), including single and multiplayer scenarios, games where euglena hit virtual targets, and games where euglena pushed virtual objects. Games that involved pushing objects across the screen (relying on collective motion of many organisms) were generally more consistent at correlating player strategy to scored points than those that involved hitting target objects. The quality and robustness of these integrated projects naturally varied, and individual groups placed more or less emphasis on different aspects based on personal preferences and learning goals (for example, fabricating a more elaborate housing for the game controller versus programming more complex game mechanics). A key point was that the students did not rely on prepared materials or platforms to develop their games but rather had to design, build, and test their game setups from scratch, thereby revisiting and deepening the primary learning goals of the course with some freedom to follow their own learning aspirations (Fig. 2). The final project deliverables were a two-minute project demonstration video, a website describing the elements of the project, and a game that all instructors and students played on the final day (Fig. 1B), which led to lots of laughter as well as in-depth discussions on technical details.Many students self-reported that they enjoyed the project and that it led to increased motivation and effort during the course. In response to the question “Do you think you were motivated to try harder or had more fun (and thereby learned more) during your final project because you were making a game (rather than just building a technical instrument, for example)? If so—please give some examples:” 15 out of 17 students responded “Very/definitely” on a five point scale. As examples, students listed: “wanted to make the best game,” “want to make it clever and cool in the eyes of classmates who are play testing,” “motivated during final push,” “willing to put in more time,” “was fun”/”made it fun,” “create a game that actually works,” “reinforced what was learned before,” and “provided room for creativity.” These comments reflect the overall excitement we saw for the biotic game project. While these responses do not constitute rigorous proof regarding course effectiveness (which will require more detailed and controlled assessments in the future), we consider this course a success based on our teaching experiences.45 students have now taken this class over the past three years, with 18 students in our most recent offering. We used each year to iterate and improve our implementation. For example, we changed the organism and stimulus from Paramecia galvanotaxis [5] to Euglena phototaxis, which gave more reliable long-term responses. We also added a simple microfluidics unit enabling students to build more robust organism housing chambers. We changed the microscope structure from LEGO to Thorlabs parts (essentially trading the emphasis on 3-D structural design, flexibility, and cost for a more in-depth focus on high-end optics and their alignment). Finally, we explicitly asked the students to design and fabricate a housing for the game controller to better incorporate fabrication skills like using a band saw and tapping screw threads. So far, we primarily used MATLAB as the programming component given its widespread use in education and research and the available Arduino interface. However, MATLAB is not particularly well-suited to support game design and is also not free, making translation into lower resource settings challenging. For the future, we are considering moving to smartphone-based control (such as Android) given that these mobile environments are very flexible and increasingly used for control of scientific and consumer instruments and are becoming more widespread in education. We also see the opportunity to better emphasize and teach the approach of iterative design; for example, by letting students prototype and test their game ideas on paper [10] and simple programming environments like Scratch [11] first, before attempting the full implementation. It would likely also be very rewarding for the students to be able to take their project home at the end of the course. In summary, many different course design decisions can be made based on specific intended educational outcomes. Not all of these can be fit into one course at the same time, and clear decisions should be made on how to balance covering a breadth of topics with depth on a selected few.As a preliminary test of another age range, time frame, and budget, we taught a greatly simplified 3-hour workshop where high school and middle school students assembled a low-cost microscope and microfluidics chamber, attached it to a smartphone, and stimulated euglena using a preprogrammed Arduino-based controller (see supplements). We had no game interface implemented yet on the phone, but the students could observe the euglena responses to the light stimuli. All students were able to complete the project and take their microscopes home. Over half of our undergraduate student teams also volunteered to present their game projects for this outreach event which took place multiple weeks after their class had ended. This separate experience suggests that the biotic game concept holds promise for reaching a wider age range in a shortened timespan and at a greatly reduced budget, and that completed games can be used in outreach activities. We are currently developing a kit modeled after this unit.In conclusion, we consider biotic games promising in motivating integrated, hands-on learning at the interface of life science and engineering. Our efforts so far indicate that this concept could be adapted to various age groups and learning goals with the potential for wider future impacts on education. We draw upon the analogy to robotics, where microcontrollers went from initially unfathomable as an educational tool to the vision of Papert and collaborators and their use of programmable robotics with children [12], eventually leading to multiple commercial realizations (LEGO mindstorm, Arduino, etc.), a large public following, and a major role in education both in the classroom and through competitions such as First Robotics [1]. We also see additional potential for integrating more creative and artistic aspects into STEM, i.e., leading to generalized Science, Technology, Engineering, Arts, and Mathematics (STEAM) disciplines [13]. We invite others to join us in these endeavors—all instructional materials are available in the appendix for further adaptations and educational use.  相似文献   

18.
19.
I consider the problem of characterizing the optimal plasticresponse when there are large-scale fluctuations in the environmentaffecting all population members. Individuals differ in theirstate, and each makes a reproductive decision before the environmentalconditions are known. An individual's state, its decision, andenvironmental conditions together determine the number of descendantsleft at the next decision epoch. I restrict attention to thesimple problem in which the state of the descendants left atthis epoch does not depend on these three factors. Because theenvironment is fluctuating, there is no individual optimization;instead the best action in one state implicitly depends on thebest action in other states. I characterize an optimal state-dependentstrategy, give a method of computation, and show how behaviorof each individual following the optimal strategy may be reinterpretedas a form of "individual optimization." Concepts are illustratedwith an example of optimal dutch size as a function of territoryquality.  相似文献   

20.
Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.
This Essay is part of the "Where Next?" Series.
Experimental biologists collect details. In the early days, naturalists prowled their backyards, local forests, and meadows. They traveled the Amazon River and African savannahs and collected species and categorized them. These collectors of beetles and ferns then tried to formulate hypotheses about evolutionary relationships by looking at commonalities of structure, function, and development. In those days, there was an implicit belief that the passionate acquisition of detailed information about the idiosyncrasies of individual species contained the route to understanding the general principles of life. Although today’s experimental neuroscientists employ much more sophisticated methods, most retain a deep conviction that the specific properties of molecules, synapses, neurons, circuits, and connectomes are important for understanding how brains, be they small or large, work.Modern neuroscience traces much of its history to prescient physiologists, pharmacologists, and anatomists. Early anatomists such as Ramón y Cajal pioneered the use of stains to reveal the structure of neurons and to make astonishing leaps of intuition about the structure and function of brain circuits [1]. Early physiologists and pharmacologists deduced the existence of receptors and kinetics from bioassays [2,3]. Observation and reasoning from first principles led T. Graham Brown [4,5] to first articulate that reciprocal inhibition in the spinal cord could underlie the generation of rhythmic movements. Cajal and Brown anticipated systems neuroscience as we know it today: understanding how the particular properties of neurons and their connections give rise to the complex and adaptive responses that allow animals to interact with each other and their worlds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号