首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD2 operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.  相似文献   

2.
CTP:phosphocholine cytidylyltransferase α (CCTα) is a nuclear enzyme that catalyzes the rate-limiting step in the CDP-choline pathway for phosphatidylcholine (PC) synthesis. Lipid activation of CCTα results in its translocation to the nuclear envelope and expansion of an intranuclear membrane network termed the nucleoplasmic reticulum (NR) by a mechanism involving membrane deformation. Nuclear lamins are also required for stability and proliferation of the NR, but whether this unique structure, or the nuclear lamina in general, is required for PC synthesis is not known. To examine this relationship, the nuclear lamina was depleted by RNAi or disrupted by expression of the Hutchinson-Gilford progeria syndrome (HGPS) mutant lamin A (progerin), and the effect on CCTα and choline metabolism was analyzed. siRNA-mediated silencing of lamin A/C or lamin B1 in CHO cells to diminish the NR had no effect on PC synthesis, while double knockdown non-specifically inhibited the pathway. Confirming this minor role in PC synthesis, only 10% of transiently overexpressed choline/ethanolamine phosphotransferase was detected in the NR. In CHO cells, CCTα was nucleoplasmic and co-localized with GFP-progerin in nuclear folds and invaginations; however, HGPS fibroblasts displayed an abnormal distribution of CCTα in the cytoplasm and nuclear envelope that was accompanied by a 2-fold reduction in PC synthesis. In spite of its altered localization, choline-labeling experiments showed that CCT activity was unaffected, and inhibition of PC synthesis was traced to reduced activity of a hemicholinium-sensitive choline transporter. We conclude that CCTα and lamins specifically cooperate to form the NR, but the overall structure of the nuclear envelope has a minimal impact on CCT activity and PC synthesis.  相似文献   

3.
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in eukaryotic membranes and its biosynthetic pathway is generally controlled by CTP:Phosphocholine Cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCT is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum (ER) translocation; however, most of the enzyme is intranuclearly located. Here we demonstrate that CCTα is concentrated in the nucleoplasm of MDCK cells. Confocal immunofluorescence revealed that extracellular hypertonicity shifted the diffuse intranuclear distribution of the enzyme to intranuclear domains in a foci pattern. One population of CCTα foci colocalised and interacted with lamin A/C speckles, which also contained the pre-mRNA processing factor SC-35, and was resistant to detergent and salt extraction. The lamin A/C silencing allowed us to visualise a second more labile population of CCTα foci that consisted of lamin A/C-independent foci non-resistant to extraction. We demonstrated that CCTα translocation is not restricted to its redistribution from the nucleus to the ER and that intranuclear redistribution must thus be considered. We suggest that the intranuclear organelle distribution of CCTα is a novel mechanism for the regulation of enzyme activity.  相似文献   

4.
The cytidylyltransferases are a family of enzymes that utilize cytidine 5′-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from 14C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.  相似文献   

5.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

6.
7.
We evaluated the effects of prostaglandins (PGs) on rat glioma C6BU-1 cells by supplementing the culture media with PGs. In the medium containing PGD2 (15 or 20 μM), the glial cells showed altered morphology from an elongated fibroblastic form to a spreading multipolar one within 24 h, and their growth rate was suppressed to half of that of control cultures. In these cultures, the specific activity of glutamine synthetase (GS) increased approximately twofold within 48 h in comparison to the value for vehicle-treated controls. Simultaneous treatment with actinomycin D or cycloheximide completely blocked the PGD2-elicited increase in GS specific activity, suggesting that the increase was due to de novo synthesis of the enzyme. PGD2-like prostanoids such as PGD1 and 9-deoxy-Δ9, Δ12-13,14-dihydro-PGD2 (Δ12-PGJ2), when added to the culture medium, mimicked the actions of PGD2 on the C6BU-I cells, though their effective concentrations were not necessarily identical. PGs of the E- and F-series had almost no discernible effect on the glioma. These results might imply a possibility that PGD2 plays a regulatory effect in growth and/or differentiation of rat glioma C6BU-1 cells.  相似文献   

8.
Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.  相似文献   

9.
A solid-phase enzyme immunoassay for prostaglandin D2 (PGD2) was developed in which PGD2 was labeled with horseradish peroxidase. After competitive binding to the immobilized antibody between enzyme-labelled and free PGD2, the activity of the enzyme bound to the antibody was assayed fluorometrically using 3-(p-hydroxyphenyl)- propionic acid and hydrogen peroxide as substrates. The procedure allowed determinations of 3 – 100 pg for PGD2. The IC50 value for PGD2 in the solid-phase enzyme immunoassay was about 25 pg and the sensitivity was improved about 10 times compared to those in radioimmunoassay and in solution-phase enzyme immunoassay. The solid-phase enyzme immunoassay was applied to the measurement of PGD2 content in rat brain and thereby an octadecylsilyl silica cartridge and a reversed-phase HPLC were sequentially used for sample preparations. Heads were immediately frozen in liquid nitrogen after decapitation to avoid a postmortem formation of PGD2. PGD2 contents measured by solid-phase enzyme immunoassay correlated well with the values obtained by radioimmunoassay (r = 0.966) after raising its contents by intravenous administration of PGD2. The level of PGD2 in rat brain was extremely low but determined to be 0.11 ± 0.03 ng/g tissue (mean ± S.E.M.) with this enzyme immunoassay. The result was equal to the value extrapolated to zero time from the postmortem change.  相似文献   

10.
Angiotensin stimulates a cellular mitogenic response via the AT1 receptor. We have examined the effect of angiotensin on the rate of phosphatidylcholine (PC) synthesis and have begun to dissect the pathway linking the AT1 receptor to the rate-limiting enzyme in PC synthesis, CTP: phosphocholine cytidylyltransferase (CCT), using CHO cells engineered to express the AT1a receptor. Since CCT can be directly activated by lipid mediators, we probed for their involvement in the PC synthesis response to angiotensin. Angiotensin stimulated CCT activity and PC synthesis two- to threefold after a 30-min delay. The kinetics of this stimulation most closely paralleled an increase in diacylglycerol (DAG) derived from myristic acid-enriched phospholipids. The production of arachidonic acid, phosphatidic acid, or reactive oxygen species either peaked much earlier or not at all. Moreover, manipulation of the intracellular supply of oxygen free radicals, arachidonic acid, HETEs, or phosphatidic acid (using inhibitors and/or exogenous addition) did not generate parallel effects on the rate of PC synthesis. Restricting the production of DAG by inhibition of PLCbeta with U73122 reduced both basal and angiotensin-stimulated PC synthesis. The U73122 inhibition of PC synthesis was accompanied by a similar inhibition of ERK1/2 phosphorylation. Addition of exogenous DAG stimulated basal and angiotensin-dependent PC synthesis, and partially reversed the effect of the PLC inhibitor on PC synthesis. These results do not provide support for lipid mediators as direct stimulators of CCT and PC synthesis downstream of angiotensin, but give rise to the idea that angiotensin effects might be mediated via ERK1/2.  相似文献   

11.
B Cooper 《Life sciences》1979,25(16):1361-1367
The effect of exposing platelets to prostaglandin D2 (PGD2) on hormone binding was studied. Incubation of platelets with PGD2 for 2 hr resulted in a decrease in [3H]PGD2 binding that was dose dependent. Inhibition of binding was 14% after incubation with 10?8M PGD2, 19% after incubation with 10?7M PGD2, and 40% after exposure to 10?6M PGD2. This decreased binding (desensitization) was specific for [3H]PGD2 as binding to platelets by [3H]PGE1 and the α-adrenergic antagonist [3H] dihydroergocryptine (DHEC) was comparable to control platelets. Saturation of [3]PGD2 binding to desensitization platelets was at 27 fmole ligand/108 platelets compared to 43 fmoles/108 platelets in control platelets. Half-maximal saturation occured at 20 nM PGD2 both for desensitized and control platelets, suggesting that decreased binding sites rather than altered affinity between ligand and receptor accounted for these results. These platelets had a partial increase in [3H]PGD2 binding a few hours after plasma was washed free of PGD2 with complete resensitization after 24 hr. Since prostaglandins such as PGI2, PGD2, and PGE1 are potent inhibitors of platelet aggregation, decreased binding of platelets to these hormones after prostaglandin exposure may provide a mechanism for altered responsiveness of platelets to aggregating stimuli.  相似文献   

12.
13.
Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) D2 is abundantly produced in the brain and regulates the sleep response. Moreover, PGD2 is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with PGD2 significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that PGD2 treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, PGD2 may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.  相似文献   

14.
We are probing the regulation of phosphatidylcholine (PC) synthesis by angiotensin II. In the accompanying paper, we showed that manipulation of the lipid second messengers, arachidonic acid or hydroxyeicosatetraenoic acid, produced downstream of the angiotensin AT1a receptor did not affect the PC synthesis rates in a manner consistent with direct activation of the rate limiting enzyme in the pathway, CTP:phosphocholine cytidylyltransferase (CCT). However, suppression of diacylglycerol (DAG) production with an inhibitor of phospholipase C-beta reduced angiotensin-dependent PC synthesis as well as ERK1/2 phosphorylation. Here, we show that the stimulation of PC synthesis and activation of CCT by angiotensin requires a signaling pathway that involves protein kinase C and ERK1/2. The inhibitors bis-indolylmaleimide I and PD98059 blocked ERK1/2 phosphorylation and completely eliminated angiotensin stimulation of the CCT-catalyzed reaction and PC synthesis. Exogenous addition of DAG using a lipid vesicle delivery system exactly mimicked the kinetics of angiotensin-promoted PC synthesis, suggesting that this mode of DAG delivery can effectively substitute for the DAG generated downstream of the activated AT1a receptor. Moreover, exogenous DAG activated ERK1/2, and the activation of PC synthesis by DAG was blocked by inhibition of protein kinase C and MEK. These data suggest that angiotensin-dependent DAG and the exogenously supplied DAG stimulate PC synthesis, not solely by direct action on CCT, but via a signaling pathway involving protein kinase C and ERK1/2. Angiotensin did not alter the net phosphorylation state of CCT as probed by immunoprecipitation of 32P-labeled CCT. Angiotensin stimulation of ERK1/2 likely mediates effects on CCT via a process other than CCT dephosphorylation.  相似文献   

15.
Pain is one of the cardinal signs of inflammation and is present in many inflammatory conditions. Therefore, anti-inflammatory drugs such as NSAIDs also have analgesic properties. We previously showed that prostaglandin D2-glycerol ester (PGD2-G), endogenously produced by cyclooxygenase-2 from the endocannabinoid 2-arachidonoylglycerol, has anti-inflammatory effects in vitro and in vivo that are partly mediated by DP1 receptor activation. In this work, we investigated its effect in a model of carrageenan-induced inflammatory pain. PGD2-G decreased hyperalgesia and edema, leading to a faster recovery. Moreover, PGD2-G decreased carrageenan-induced inflammatory markers in the paw as well as inflammatory cell recruitment. The effects of PGD2-G were independent from metabolite formation (PGD2 and 15d-PGJ2-G) or DP1 receptor activation in this model. Indeed PGD2 delayed recovery from hyperalgesia while 15d-PGJ2-G worsened the edema. However, while PGD2-G decreased hyperalgesia in this model of inflammatory pain, it had no effect when tested in the capsaicin-induced pain model. While the targets mediating the effects of this bioactive lipid in inflammatory pain remain to be elucidated, our findings further support the interest of anti-inflammatory lipid mediators in the management of inflammatory pain.  相似文献   

16.
Potential interactions between PGD2 and PGF in the mesenteric and renal vascular beds were investigated in the anesthetized dog. Regional blood flows were measured with electromagnetic flow probes. PGD2, PGF and Norepinephrine (NE) were injected as a bolus directly into the appropriate artery, and responses to these agents were obtained before, during and after infusion of either PGD2 or PGF into the left ventricle. In each case, the infused prostaglandin caused vascular effects of its own. Left ventricular infusion of PGD2 reduced responses to local injections of PGD2 in the intestine, and a similar effect was observed for PGF, suggesting significant receptor or receptor-like interactions for each of the prostanoids. However, systemic infusion of prostaglandin F (20–100 ng/kg/min) had no effect on renal or mesenteric vascular responses to local injection of prostaglandin D2. Similarly, PGD2 administration (100 ng/kg/min) did not affect responses to PGF in the intestine. The present results therefore suggest that these prostaglandins, i.e., D2 and F, act through separate receptors in the mesenteric and renal vascular beds. In addition, increased prostaglandin F levels produced by infusion of F reduced mesenteric but not renal blood flow, suggesting that redistribution of cardiac output might participate in side effects often observed with clinical use of this prostaglandin, such as nausea and abdominal pain.  相似文献   

17.
During entry into the cell cycle a phosphatidylcholine (PC) metabolic cycle is activated. We have examined the hypothesis that PC synthesis during the G(0) to G(1) transition is controlled by one or more lipid products of PC turnover acting directly on the rate-limiting enzyme in the synthesis pathway, CTP: phosphocholine cytidylyltransferase (CCT). The acceleration of PC synthesis was two- to threefold during the first hour after addition of serum to quiescent IIC9 fibroblasts. The rate increased to approximately 15-fold above the basal rate during the second hour. The production of arachidonic acid, diacylglycerol (DAG), and phosphatidic acid (PA) preceded the second, rapid phase of PC synthesis. However, an increase in the cellular content of these lipid mediators was detected only for DAG. CCT activation and translocation to membranes accompanied the second phase of the PC synthesis acceleration. Bromoenol lactone (BEL), an inhibitor of calcium-independent phospholipase A(2) and PA phosphatase, blocked production of fatty acids and DAG, inhibited both phases of the PC synthesis response to serum, and reduced CCT activity and membrane affinity. The effect of BEL on PC synthesis was partially reversed by in situ generation of DAG via exogenous PC-specific phospholipase C to generate approximately 2-fold elevation in PC-derived DAG. Exogenous arachidonic acid also partially reversed the inhibition by BEL, but only at a concentration that generated a supra-physiological cellular content of free fatty acid. 1-Butanol, which blocks PA production, had no effect on DAG generation, or on PC synthesis. We conclude that fatty acids and DAG could contribute to the initial slow phase of the PC synthesis response. DAG is the most likely lipid regulator of CCT activity and the rapid phase of PC synthesis. However, processes other than direct activation of CCT by lipid mediators likely contribute to the highly accelerated phase during entry into the cell cycle.  相似文献   

18.
The presence of prostaglandins (PGs) has been demonstrated in the processes of carcinogenesis and inflammation. In the present study, we found that 12-o-tetradecanoylphorbol 13-acetate (TPA) induced cyclooxygenase 2 (COX-2), but not COX-1, protein expression in HL-60 cells, and the addition of arachidonic acid (AA) in the presence or absence of TPA significantly reduced the viability of HL-60 cells, an effect that was blocked by adding the COX inhibitors, NS398 and aspirin. The AA metabolites, PGD2 and PGJ2, but not PGE2 or PGF, reduced the viability of the human HL60 and Jurkat leukemia cells according to the MTT assay and LDH release assay. Apoptotic characteristics including DNA fragmentation, apoptotic bodies, and hypodiploid cells were observed in PGD2- and PGJ2-treated leukemia cells. A dose- and time-dependent induction of caspase 3 protein procession, and PARP and D4-GDI protein cleavage with activation of caspase 3, but not caspase 1, enzyme activity was detected in HL-60 cells treated with PGD2 or PGJ2. Additionally, DNA ladders induced by PGD2 and PGJ2 were significantly inhibited by the caspase 3 peptidyl inhibitor, Ac-DEVD-FMK, but not by the caspase 1 peptidyl inhibitor, Ac-YVAD-FMK, in accordance with the blocking of caspase 3, PARP, and D4-GDI protein procession. An increase in intracellular peroxide levels by PGD2 and PGJ2 was identified by the DCHF-DA assay, and anti-oxidant N-acetyl cysteine (NAC), mannitol (MAN), and tiron significantly inhibited cell death induced by PGD2 and PGJ2 by reducing reactive oxygen species (ROS) production. The PGJ2 metabolites, 15-deoxy-Δ12,14-PGJ2 and Δ12-PGJ2, exhibited effective apoptosis-inducing activity in HL-60 cells through ROS production via activation of the caspase 3 cascade. The proliferator-activated receptor-γ (PPAR-γ) agonists, rosiglitazone (RO), troglitazone (TR), and ciglitazone (CI), induced apoptosis in cells which was blocked by the addition of the PPAR-γ antagonists, GW9662 and BADGE, via blocking of caspase 3 and PARP cleavage. However, neither GW9662 nor BADGE showed any protective effect on PGD2- and PGJ2-induced apoptosis. A differential apoptotic effect of PGs through ROS production, followed by activation of the caspase 3 cascade, was demonstrated.  相似文献   

19.
Inorganic phosphate (Pi) transport probably represents an important function of bone-forming cells in relation to extracellular matrix mineralization. In the present study, we investigated the effect of prostaglandin D2 (PGD2) on Pi transport activity and its intracellular signaling mechanism in MC3T3-E1 osteoblast-like cells. PGD2 stimulated Na-dependent Pi uptake time- and dose-dependently in MC3T3-E1 cells during their proliferative phase. A protein kinase C (PKC) inhibitor calphostin C partially suppressed the stimulatory effect of PGD2 on Pi uptake. The selective inhibitors of mitogen-activated protein (MAP) kinase pathways such as ERK, p38 and Jun kinases suppressed PGD2-induced Pi uptake. The inhibitors of phosphatidylinositol (PI) 3-kinase and S6 kinase reduced this effect of PGD2, while Akt kinase inhibitor did not. These results suggest that PGD2 stimulates Na-dependent Pi transport activity in the phase of proliferation of osteoblasts. The mechanisms responsible for this effect are activation of PKC, MAP kinases, PI 3-kinase and S6 kinase.  相似文献   

20.
To study the precise mechanism of cytotoxic activity of PGD2 or Δ12-PGJ2 (a biological active metabolite of PGD2), we examined the effect of various compounds on PGD2 or Δ12-PGJ2 cytottoxic, using a human neuroblastoma cell line (NCG). Cycloheximide (CHM) specifically protected PGD2 cytotoxicity on NCG cells. When Δ12-PGJ2 was tested, CHM exhibited a similar rescue effect. Puromycin, mitomycin C, and α-amanitin did not affect PGD2 or Δ12-PGJ2 cytotoxicity. Emetine showed a variable and no consistent rescue effect CHM may have been active at the primary site where PGD2 or Δ12-PGJ2 exerts its cytotoxicity. This is the first report indicating that CHM reduces the cytotoxicity induced by PGD2 or Δ12-PGJ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号