首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kynurenine formamidase (KFase) (EC 3.5.1.9) hydrolyzes N-formyl-L-kynurenine, an obligatory step in the conversion of tryptophan to nicotinic acid. Low KFase activity in chicken embryos, from inhibition by organophosphorus insecticides and their metabolites such as diazoxon, leads to marked developmental abnormalities. While KFase was purportedly isolated previously, the structure and residues important for catalysis and inhibition were not established. KFase was isolated here from mouse liver cytosol by (NH4)2SO4 precipitation and three FPLC steps (resulting in 221-fold increase in specific activity for N-formyl-L-kynurenine hydrolysis) followed by conversion to [3H]diethylphosphoryl-KFase and finally isolation by C4 reverse-phase high-performance liquid chromatography. Determination of tryptic fragment amino acid sequences and cDNA cloning produced a new 305-amino-acid protein sequence. Although an amidase by function, the primary structure of KFase lacks the amidase signature sequence and is more similar to esterases and lipases. Sequence profile analysis indicates KFase is related to the esterase/lipase/thioesterase family containing the conserved active-site serine sequence GXSXG. The alpha/beta-hydrolase fold is suggested for KFase by its primary sequence and predicted secondary conformation. A three-dimensional model based on the structures of homologous carboxylesterase EST2 and brefeldin A esterase implicates Ser162, Asp247 and His279 as the active site triad.  相似文献   

2.
The hyperthermophilic Archaeon Archaeoglobus fulgidus has a gene (AF1763) which encodes a thermostable carboxylesterase belonging to the hormone-sensitive lipase (HSL)-like group of the esterase/lipase family. Based on secondary structure predictions and a secondary structure-driven multiple sequence alignment with remote homologous proteins of known three-dimensional structure, we previously hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and esterases and identified Ser160, Asp 255 and His285 as the putative members of the catalytic triad. In this paper we report the building of a 3D model for this enzyme based on the structure of the homologous brefeldin A esterase from Bacillus subtilis whose structure has been recently elucidated. The model reveals the topological organization of the fold corroborating our predictions. As regarding the active-site residues, Ser160, Asp255 and His285 are located close each other at hydrogen bond distances. The catalytic role of Ser160 as the nucleophilic member of the triad is demonstrated by the [(3)H]diisopropylphosphofluoridate (DFP) active-site labeling and sequencing of a radioactive peptide containing the signature sequence GDSAGG.  相似文献   

3.
In an attempt to convert an aspartic proteinase into another class of proteinase, the catalytic residues of porcine pepsin were substituted with the catalytic triad characteristic of a serine proteinase, using trypsin as the model. Computer modeling suggested six possible sites within porcine pepsin sequence for the introduction of the catalytic triad. The six mutants of pepsin were subsequently constructed and examined for their catalytic activities. Among the six mutants, two mutants, D32S/I300H/G302D (MutI) and D32G/S35H/Y75S/I120D (MutJ), showed peptide hydrolysis activities. In comparison to the original activity of pepsin, the kinetic constants of these mutants were very low with K(m) values of 4.10 and 2.10mM, and k(0) values of 22.2 and 18.0 min(-1). In the presence of PMSF, a serine proteinase inhibitor, the activities for these mutants were inhibited by 86.5% and 80.1%, respectively, indicating that the catalytic triad of the trypsin had been successfully introduced into porcine pepsin.  相似文献   

4.
Kumamolisin-As is an acid collagenase with a subtilisin-like fold. Its active site contains a unique catalytic triad, Ser278-Glu78-Asp82, and a putative transition-state stabilizing residue, Asp164. In this study, the mutants D164N and E78H/D164N were engineered in order to replace parts of the catalytic machinery of kumamolisin-As with the residues found in the equivalent positions in subtilisin. Unlike the wild-type and D164N proenzymes, which undergo instantaneous processing to produce their 37-kDa mature forms, the expressed E78H/D164N proenzyme exists as an equilibrated mixture of the nicked and intact forms of the precursor. X-ray crystallographic structures of the mature forms of the two mutants showed that, in each of them, the catalytic Ser278 makes direct hydrogen bonds with the side chain of Asn164. In addition, His78 of the double mutant is distant from Ser278 and Asp82, and the catalytic triad no longer exists. Consistent with these structural alterations around the active site, these mutants showed only low catalytic activity (relative k(cat) at pH 4.0 1.3% for D164N and 0.0001% for E78H/D164N). pH-dependent kinetic studies showed that the single D164N substitution did not significantly alter the logk(cat) vs. pH and log(k(cat)/Km) vs. pH profiles of the enzyme. In contrast, the double mutation resulted in a dramatic switch of the logk(cat) vs. pH profile to one that was consistent with catalysis by means of the Ser278-His78 dyad and Asn164, which may also account for the observed ligation/cleavage equilibrium of the precursor of E78H/D164N. These results corroborate the mechanistic importance of the glutamate-mediated catalytic triad and oxyanion-stabilizing aspartic acid residue for low-pH peptidase activity of the enzyme.  相似文献   

5.
Alam M  Vance DE  Lehner R 《Biochemistry》2002,41(21):6679-6687
Triacylglycerol hydrolase is a microsomal enzyme that hydrolyzes stored cytoplasmic triacylglycerol in the liver and participates in the lipolysis/re-esterification cycle during the assembly of very-low-density lipoproteins. The structure-activity relationship of the enzyme was investigated by site-directed mutagenesis and heterologous expression. Expression of human TGH in Escherichia coli yields a protein without enzymatic activity, which suggests that posttranslational processing is necessary for the catalytic activity. Expression in baculovirus-infected Sf-9 cells resulted in correct processing of the N-terminal signal sequence and yielded a catalytically active enzyme. A putative catalytic triad consisting of a nucleophilic serine (S221), glutamic acid (E354), and histidine (H468) was identified. Site-directed mutagenesis of the residues (S221A, E354A, and H468A) yielded a catalytically inactive enzyme. CD spectra of purified mutant proteins were very similar to that of the wild-type enzyme, which suggests that the mutations did not affect folding. Human TGH was glycosylated in the insect cells. Mutagenesis of the putative N-glycosylation site (N79A) yielded an active nonglycosylated enzyme. Deletion of the putative C-terminal endoplasmic reticulum retrieval signal (HIEL) did not result in secretion of the mutant protein. A model of human TGH structure suggested a lipase alpha/beta hydrolase fold with a buried active site and two disulfide bridges (C87-C116 and C274-C285).  相似文献   

6.
A recombinant lipase cloned from Pseudomonas fragi strain IFO 3458 (PFL) was found to retain significant activity at low temperature. In an attempt to elucidate the structural basis of this behaviour, a model of its three-dimensional structure was built by homology and compared with homologous mesophilic lipases, i.e. the Pseudomonas aeruginosa lipase (45% sequence identity) and Burkholderia cepacia lipase (38%). In this model, features common to all known lipases have been identified, such as the catalytic triad (S83, D238 and H260) and the oxyanion hole (L17, Q84). Structural modifications recurrent in cold-adaptation, i.e. a large amount of charged residues exposed at the protein surface, have been detected. Noteworthy is the lack of a disulphide bridge conserved in homologous Pseudomonas lipases that may contribute to increased conformational flexibility of the cold-active enzyme.  相似文献   

7.
8.
Glucosyltransferases (GtfB/C/D) in Streptococcus mutans are responsible for synthesizing water-insoluble and water-soluble glucans from sucrose and play very crucial roles in the formation of dental plaque. A monoclonal antibody against a 19-mer peptide fragment named Gtf-P1 was found in GtfC to reduce the enzyme activity to 50%. However, a similar experiment suggested almost unchanged activity in GtfD, despite of the very high sequence homology between the two enzymes. No further details are yet available to elucidate the biochemical mechanism responsible for such discrimination. For a better understanding of the catalytic behavior of these glucosyltransferases, structural and functional analyses were performed. First, the exact epitope was identified to specify the residue(s) required for monoclonal antibody recognition. The results suggest that the discrimination is determined solely by single residue substitution. Second, based on a combined sequence and secondary structure alignment against known crystal structure of segments from closely related proteins, a three-dimensional homology model for GtfC was built. Structural analysis for the region communicating between Gtf-P1 and the catalytic triad revealed the possibility for an "en bloc" movement of hydrophobic residues, which may transduce the functional influence on enzyme activity from the surface of molecule into the proximity of the active site. Figure Side chain interactions between Gtf-P1 and catalytic Asp-477 in GtfC. Calpha-tracing of GtfC with the two crucial peptides (Gtf-P1, orange; Gtf-P2, blue) and the catalytic triad residues ( red) highlighted to show their relative spatial organization. Side chains for the residues are also depicted according to their atom types. The structure is viewed with the barrel opening facing down  相似文献   

9.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to form acetyl-CoA and acetoacetate. In metal-dependent aldol and Claisen reactions, acidic residues often function either as cation ligands or as participants in general acid/base catalysis. Site-directed mutagenesis was used to produce conservative substitutions for the conserved acidic residues Glu-37, Asp-42, Glu-72, Asp-204, Glu-279, and Asp-280. HMG-CoA lyase deficiency results from a human mutation that substitutes lysine for glutamate 279. The E279K mutation has also been engineered; expression in Escherichia coli produces an unstable protein. Substitution of alanine for glutamate 279 produces a protein that is sufficiently stable for isolation and retains substantial catalytic activity. However, thermal inactivation experiments demonstrate that E279A is much less stable than wild-type enzyme. HMG-CoA lyase deficiency also results from mutations at aspartate 42. Substitutions that eliminate a carboxyl group at residue 42 perturb cation binding and substantially lower catalytic efficiency (104-105-fold decreases in specific activity for D42A, D42G, or D42H versus wild-type). Substitutions of alanine for the other conserved acidic residues indicate the importance of glutamate 72. E72A exhibits a 200-fold decrease in kcat and >103-fold decrease in kcat/Km. E72A is also characterized by inflation in the Km for activator cation (26-fold for Mg2+; >200-fold for Mn2+). Similar, but less pronounced, effects are measured for the D204A mutant. E72A and D204A mutant proteins both bind stoichiometric amounts of Mn2+, but D204A exhibits only a 2-fold inflation in KD for Mn2+, whereas E72A exhibits a 12-fold inflation in KD (23 microm) in comparison with wild-type enzyme (KD = 1.9 microm). Acidic residues corresponding to HMG-CoA lyase Asp-42 and Glu-72 are conserved in the HMG-CoA lyase protein family, which includes proteins that utilize acetyl-CoA in aldol condensations. These related reactions may require an activator cation that binds to the corresponding acidic residues in this protein family.  相似文献   

10.
Wu KH  Hsieh YH  Tai PC 《PloS one》2012,7(4):e35382
CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca(2+)-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V.  相似文献   

11.
Yau MH  Wang J  Tsang PW  Fong WP 《FEBS letters》2006,580(5):1465-1471
J1 acylase, a glutaryl-7-aminocephalosporanic acid acylase (GCA) isolated from Bacillus laterosporus J1, has been conventionally grouped as the only member of class V GCA, although its amino acid sequence shares less than 10% identity with members of other classes of GCA. Instead, it shows higher sequence similarities with Rhodococcus sp. strain MB1 cocaine esterase (RhCocE) and Acetobacter turbidans alpha-amino acid ester hydrolase (AtAEH), members of the alpha/beta-hydrolase fold superfamily. Homology modeling and secondary structure prediction indicate that the N-terminal region of J1 acylase has an alpha/beta-hydrolase folding pattern. The catalytic triads in RhCocE and AtAEH were identified in J1 acylase as S125, D264 and H309. Mutations to alanine at these positions were found to completely inactivate the enzyme. These results suggest that J1 acylase is a member of the alpha/beta-hydrolase fold superfamily with a serine-histidine-aspartate catalytic triad.  相似文献   

12.
The haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB) is the enzyme involved in the gamma-hexachlorocyclohexane degradation. This enzyme hydrolyses a broad range of halogenated aliphatic compounds via an alkyl-enzyme intermediate. LinB is believed to belong to the family of alpha/beta-hydrolases which employ a catalytic triad, i.e. nucleophile-histidine-acid, during the catalytic reaction. The position of the catalytic triad within the sequence of LinB was probed by a site-directed mutagenesis. The catalytic triad residues of the haloalkane dehalogenase LinB are proposed to be D108, H272 and E132. The topological location of the catalytic acid (E132) is after the beta-strand six which corresponds to the location of catalytic acid in the pancreatic lipase, but not in the haloalkane dehalogenase of Xanthobacter autotrophicus GJ10 which contains the catalytic acid after the beta-strand seven.  相似文献   

13.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.  相似文献   

14.
Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide. FAAH's primary structure identifies this enzyme as a member of a diverse group of alkyl amidases, known collectively as the "amidase signature family". At present, this enzyme family's catalytic mechanism remains poorly understood. In this study, we investigated the catalytic features of FAAH through mutagenesis, affinity labeling, and steady-state kinetic methods. In particular, we focused on the respective roles of three serine residues that are conserved in all amidase signature enzymes (S217, S218, and S241 in FAAH). Mutation of each of these serines to alanine resulted in a FAAH enzyme bearing significant catalytic defects, with the S217A and S218A mutants showing 2300- and 95-fold reductions in k(cat), respectively, and the S241A mutant exhibiting no detectable catalytic activity. The double S217A:S218A FAAH mutant displayed a 230 000-fold decrease in k(cat), supporting independent catalytic functions for these serine residues. Affinity labeling of FAAH with a specific nucleophile reactive inhibitor, ethoxy oleoyl fluorophosphonate, identified S241 as the enzyme's catalytic nucleophile. The pH dependence of FAAH's k(cat) and k(cat)/K(m) implicated a base involved in catalysis with a pK(a) of 7.9. Interestingly, mutation of each of FAAH's conserved histidines (H184, H358, and H449) generated active enzymes, indicating that FAAH does not contain a Ser-His-Asp catalytic triad commonly found in other mammalian serine hydrolytic enzymes. The unusual properties of FAAH identified here suggest that this enzyme, and possibly the amidase signature family as a whole, may hydrolyze amides by a novel catalytic mechanism.  相似文献   

15.
16.
The gene encoding kumamolysin, a thermostable pepstatin-insensitive carboxyl proteinase, was cloned and expressed. (i) Kumamolysin was synthesized as a large precursor consisting of two regions: amino-terminal prepro (188 amino acids) and mature proteins (384 amino acids). (ii) The deduced amino acid sequence of the mature region exhibited high similarity to those of such bacterial pepstatin-insensitive enzymes as Pseudomonas carboxyl proteinase (PSCP; EC 3.4.23.37, identity = 37%), Xanthomonas carboxyl proteinase (XCP; EC 3.4.23.33, identity = 36%), and human CLN2 gene product (identity = 36%), which is related to a fatal neurodegenerative disease. (iii) The presumed catalytic triad, Glu78, Asp82, Ser278 [three-dimensional structure of PSCP: Wlodawer, A. et al. (2001) Nature Struct. Biol., 8, 442-446], was found to be conserved in the amino acid sequence of kumamolysin. (iv) Kumamolysin was inactivated by such aldehyde-type inhibitors as Ac-Ile-Pro-Phe-CHO (K(i) = 0.7 0.14 microM). In PSCP, it has been clarified that these inhibitors form a hemiacetal linkage with the catalytic serine residue and inactivate the enzyme. (v) Mutational analysis of the Ser278 residue revealed that the mutant lost both auto-processing activity and proteolytic activity. These results strongly suggest that kumamolysin has a unique catalytic triad consisting of Glu78, Asp82, and Ser278 residues, as previously observed for PSCP.  相似文献   

17.
The catalytic subunit of cAMP-dependent protein kinase (PKA) can easily be expressed in Escherichia coli and is catalytically active. Four phosphorylation sites are known in PKA (S10, S139, T197 and S338), and the isolated recombinant protein is a mixture of different phosphorylated forms. Obtaining uniformly phosphorylated protein requires separation of the protein preparation leading to significant loss in protein yield. It is found that the mutant S10A/S139D/S338D has similar properties as the wild-type protein, whereas additional replacement of T197 with either E or D reduces protein expression yield as well as folding propensity of the protein. Due to its high sequence homology to Akt/PKB, which cannot easily be expressed in E. coli, PKA has been used as a surrogate kinase for drug design. Several mutations within the ATP binding site have been described to make PKA even more similar to Akt/PKB. Two proteins with Akt/PKB-like mutations in the ATP binding site were made (PKAB6 and PKAB8), and in addition S10, S139 and S338 phosphorylation sites have been removed. These proteins can be expressed in high yields but have reduced activity compared to the wild-type. Proper folding of all proteins was analyzed by 2D 1H, 15N-TROSY NMR experiments.  相似文献   

18.
Cis-epoxysuccinate hydrolase (CESH, EC 3.3.2.3) from Nocardia tartaricans is known to catalyze the opening of an epoxide ring of cis-epoxysuccinate (CES), thereby converting it to corresponding vicinal diol, l(+)-tartaric acid. An attempt has been made to build a 3D homology model of CESH to investigate the structure–function relationship, and also to understand the mechanism of the enzymatic reaction. Using a combination of molecular-docking simulation and multiple sequence alignment, a set of putative residues that are involved in the CESH catalysis has been identified. Functional roles of these putative active-site residues were further evaluated by site-directed mutagenesis. Interestingly, the mutants D18A, D18E, Q20E, T22A, R55E, N134D, K164A, H190A, H190N, H190Q, D193A, and D193E resulted in complete loss of activity, whereas the mutants Y58F, T133A, S189A, and Y192D retained partial enzyme activity. Furthermore, the active-site residues responsible for the opening of CES were analyzed, and the mechanism underlying the catalytic triad involved in l(+)-tartaric acid biosynthesis was proposed.  相似文献   

19.
Haloalkane dehalogenases: structure of a Rhodococcus enzyme   总被引:2,自引:0,他引:2  
The hydrolytic haloalkane dehalogenases are promising bioremediation and biocatalytic agents. Two general classes of dehalogenases have been reported from Xanthobacter and Rhodococcus. While these enzymes share 30% amino acid sequence identity, they have significantly different substrate specificities and halide-binding properties. We report the 1.5 A resolution crystal structure of the Rhodococcus dehalogenase at pH 5.5, pH 7.0, and pH 5.5 in the presence of NaI. The Rhodococcus and Xanthobacter enzymes have significant structural homology in the alpha/beta hydrolase core, but differ considerably in the cap domain. Consistent with its broad specificity for primary, secondary, and cyclic haloalkanes, the Rhodococcus enzyme has a substantially larger active site cavity. Significantly, the Rhodococcus dehalogenase has a different catalytic triad topology than the Xanthobacter enzyme. In the Xanthobacter dehalogenase, the third carboxylate functionality in the triad is provided by D260, which is positioned on the loop between beta7 and the penultimate helix. The carboxylate functionality in the Rhodococcus catalytic triad is donated from E141. A model of the enzyme cocrystallized with sodium iodide shows two iodide binding sites; one that defines the normal substrate and product-binding site and a second within the active site region. In the substrate and product complexes, the halogen binds to the Xanthobacter enzyme via hydrogen bonds with the N(eta)H of both W125 and W175. The Rhodococcusenzyme does not have a tryptophan analogous to W175. Instead, bound halide is stabilized with hydrogen bonds to the N(eta)H of W118 and to N(delta)H of N52. It appears that when cocrystallized with NaI the Rhodococcus enzyme has a rare stable S-I covalent bond to S(gamma) of C187.  相似文献   

20.
Abstract: cDNAs encoding the full-length sequence for tryptophan hydroxylase, and deletion mutants consisting of the regulatory (amino acids 1–98) or catalytic (amino acids 99–444) domains of the enzyme, were cloned and expressed as glutathione S -transferase fusion proteins in E. coli . The recombinant fusion proteins could be purified to near homogeneity within minutes by affinity chromatography on glutathione-agarose. The full-length enzyme and the catalytic core expressed very high levels of tryptophan hydroxylase activity. The regulatory domain was devoid of activity. The full-length enzyme and the catalytic core, while adsorbed to glutathione-agarose beads, obeyed Michaelis-Menten kinetics, and the kinetic properties of each recombinant enzyme for cofactor and substrate compared very closely to native, brain tryptophan hydroxylase. Both active forms of the glutathione S -transferase-tryptophan hydroxylase fusion proteins had strict requirements for ferrous iron in catalysis and expressed much higher levels of activity ( V max) than the brain enzyme. Analysis of full-length tryptophan hydroxylase and the catalytic core by molecular sieve chromatography under nondenaturing conditions revealed that each fusion protein behaved as a tetrameric species. These results indicate that a truncated tryptophan hydroxylase, consisting of amino acids 99–444 of the full-length enzyme, contains the sequence motifs needed for subunit assembly. Both wild-type tryptophan hydroxylase and the catalytic core are expressed as apoenzymes which are converted to holoenzymes by exogenous iron. The tryptophan hydroxylase catalytic core is also as active as the full-length enzyme, suggesting the possibility that the regulatory domain exerts a suppressive effect on the catalytic core of tryptophan hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号