首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide sequence of the chick cytoplasmic beta-actin gene   总被引:67,自引:19,他引:48       下载免费PDF全文
The nucleotide sequence of the chick beta-actin gene was determined. The gene contains 5 introns; 4 interrupt the translated region at codons 41/42, 120/122, 267, 327/328 and a large intron occurs in the 5' untranslated region. The gene has a 97 nucleotide 5'-untranslated region and a 594 nucleotide 3'-untranslated region. A slight heterogeneity in the position of the poly A addition site exists; polyadenylation can occur at either of two positions two nucleotides apart. The gene codes for an mRNA of 1814 or 1816 nucleotides, excluding the poly(A) tail. In contrast to the chick skeletal muscle actin gene the beta-actin gene lacks the Cys codon between the initiator ATG and the codon for the N-terminal amino acid of the mature protein. In the 5' flanking DNA, 15 nucleotides downstream from the CCAAT sequence, is a tract of 25 nucleotides that is highly homologous to the sequence found in the same region of the rat beta-actin gene.  相似文献   

2.
The complete nucleotide sequence of a genomic clone encoding the mouse skeletal alpha-actin gene has been determined. This single-copy gene codes for a protein identical in primary sequence to the rabbit skeletal alpha-actin. It has a large intron in the 5'-untranslated region 12 nucleotides upstream from the initiator ATG and five small introns in the coding region at codons specifying amino acids 41/42, 150, 204, 267, and 327/328. These intron positions are identical to those for the corresponding genes of chickens and rats. Similar to other skeletal alpha-actin genes, the nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. Comparison of the nucleotide sequences of rat, mouse, chicken, and human skeletal muscle alpha-actin genes reveals conserved sequences (some not previously noted) outside of the protein-coding region. Furthermore, several inverted repeat sequences, partially within these conserved regions, have been identified. These sequences are not present in the vertebrate cytoskeletal beta-actin genes. The strong conservation of the inverted repeat sequences suggests that they may have a role in the tissue-specific expression of skeletal alpha-actin genes.  相似文献   

3.
A recombinant phage containing an actin gene (lambda Ha201) was isolated from a human DNA library and the structure of the actin gene was determined. The amino acid sequences deduced from the nucleotide sequences of lambda Ha201 were compared with those of six actin isoforms; they matched those of bovine aortic smooth muscle actin, except for codon 309, which was valine (GTC) in lambda Ha201 and alanine (GCN) in bovine aortic smooth muscle actin. Southern blot hybridization experiments showed that the gene of normal human cells did not have the TaqI-sensitive site around position 309, whereas half of the genes of HUT14 cells did. These results indicate that one allele of the aortic smooth muscle actin gene in HUT14 cells has a transition point mutation (C----T) at codon 309 and that the amino acid sequences of normal human aorta and bovine smooth muscle actins are probably identical. In addition to the five introns interrupting exons at codons 150, 204, and 267, and between codons 41 and 42 and 327 and 328, which are common to skeletal muscle and cardiac muscle actin genes, the smooth muscle actin gene has two more intron sites between codons 84 and 85 and 121 and 122. The previously unreported intron site between codons 84 and 85 is unique to the smooth muscle actin gene. The intron site between codons 121 and 122 is common to beta-actin genes but is not found in other muscle actin genes. A hypothesis is proposed for the evolutionary pathway of the actin gene family.  相似文献   

4.
Plasmids p749, p106, and p150 contain cDNA inserts complementary to rat skeletal muscle actin mRNA. Nucleotide sequence analysis indicates the following sequence relationships: p749 specifies codons 171 to 360; p150 specifies codons 357 to 374 together with 120 nucleotides of the 3'-non-translated region; p106 specifies the last actin amino acid codon, the termination codon and the entire 3' non-translated region. Plasmid p749 hybridized with RNA extracted from rat skeletal muscle, cardiac muscle, smooth (stomach) muscle, and from brain. It also hybridizes well with RNA extracted from skeletal muscle and brain of dog and chick. Plasmid p106 hybridized specifically with rat striated muscles (skeletal and cardiac muscle) mRNA but not with mRNA from rat stomach and from rat brain. It also hybridized to RNA extracted from skeletal muscle of rabbit and dog but not from chick. Thermal stability of the hybrids and sensitivity to S1 digestion also indicated substantial divergence between the 3' untranslated end of rat and dog skeletal muscle actins. The investigation shows that the coding regions of actin genes are highly conserved, whereas the 3' non-coding regions diverged considerably during evolution. Probes constructed from the 3' non-coding regions of actin mRNAs can be used to identify the various actin mRNA and actin genes.  相似文献   

5.
J Eldridge  Z Zehner  B M Paterson 《Gene》1985,36(1-2):55-63
The entire nucleotide sequence of the chicken cardiac alpha-actin (CC alpha A) gene has been determined. This is the first complete sequence of a cardiac actin gene that includes the promoter region, cap site, all the introns, and the polyadenylation site. The gene contains six introns, five of which interrupt the coding region at amino acids (aa) 41, 150, 204, 267, and 327. The first intron is in the 5'-noncoding region and is 438 bp in length. The CC alpha A gene encodes an mRNA of approx. 1400 bp with 5'- and 3'-untranslated region of 59 and 184 nucleotides (nt), respectively. Like the chicken skeletal alpha-actin gene, the CC alpha A gene has the codon for the aa cysteine between the initiator ATG and the codon for the N-terminal aspartic acid residue of the mature protein. There are no strong homologies (less than 13 consecutive nt) in the promoter or 3'-untranslated regions between the CC alpha A and chicken skeletal alpha-actin genes even though both are expressed in skeletal muscle during development. However, the 3'-untranslated region of the CC alpha A gene demonstrates significant sequence homology (76% over a 200-nt region) with the same region in the partial sequence of the human cardiac gene. The conservation of these sequence homologies between identical isoforms rather than the different alpha actin genes suggests these conserved regions may have a role in regulation rather than tissue-specific expression, as previously proposed.  相似文献   

6.
7.
The actins are a group of highly conserved proteins encoded by a multigene family. We have previously reported that the skeletal muscle actin gene is located on mouse chromosome 3, together with several other unidentified actin DNA sequences. We show here that the gene coding for the cardiac muscle actin, which is closely related to the skeletal muscle actin (1.1% amino acid replacements), is located on mouse chromosome 17. The gene coding for the cytoplasmic beta-actin is located on mouse chromosome 5. Thus, these three actin genes are located on three different chromosomes.  相似文献   

8.
The entire set of six closely related Drosophila actin genes was isolated using recombinant DNA methodology, and the structures of the respective coding regions were characterized by gene mapping techniques and by nucleotide sequencing of selected portions. Structural comparisons of these genes have resulted in several unexpected findings. Most striking is the nonconservation of the positions of intervening sequences within the protein-encoding regions of these genes. One of the Drosophila actin genes, DmA4, is split within a glycine codon at position 13; none of the remaining five genes is interrupted in the analogous position. Another gene, DmA6, is split within a glycine codon at position 307; at least two of the Drosophila actin genes are not split in the analogous position. Additionally, none of the Drosophila actin genes is split within codon four, where the yeast actin gene is interrupted. The six Drosophila actin genes encode several different proteins, but the amino acid sequence of each is similar to that of vertebrate cytoplasmic actins. None of the genes encodes a protein comparable in primary sequence to vertebrate skeletal muscle actin. Surprisingly, in each of these derived actin amino acid sequences in the initiator methionine is directly followed by a cysteine residue, which in turn precedes the string of three acidic amino acids characteristic of the amino termini of mature vertebrate cytoplasmic actins. We discuss these findings in the context of actin gene evolution and function.  相似文献   

9.
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.  相似文献   

10.
The nucleotide sequence of the protective antigen (PA) gene from Bacillus anthracis and the 5' and 3' flanking sequences were determined. PA is one of three proteins comprising anthrax toxin; and its nucleotide sequence is the first to be reported from B. anthracis. The open reading frame (ORF) is 2319 bp long, of which 2205 bp encode the 735 amino acids of the secreted protein. This region is preceded by 29 codons, which appear to encode a signal peptide having characteristics in common with those of other secreted proteins. A consensus TATAAT sequence was located at the putative -10 promoter site. A Shine-Dalgarno site similar to that found in genes of other Bacillus sp. was located 7 bp upstream from the ATG start codon. The codon usage for the PA gene reflected its high A + T (69%) base composition and differed from those of genes for bacterial proteins from most other sequences examined. The TAA translation stop codon was followed by an inverted repeat forming a potential termination signal. In addition, a 192-codon ORF of unknown significance, theoretically encoding a 21.6-kDa protein, preceded the 5' end of the PA gene.  相似文献   

11.
12.
13.
In recent years, the amount of molecular sequencing data from Tetrahymena thermophila has dramatically increased. We analyzed G + C content, codon usage, initiator codon context and stop codon sites in the extremely A + T rich genome of this ciliate. Average G + C content was 38% for protein coding regions, 21% for 5' non-coding sequences, 19% for 3' non-coding sequences, 15% for introns, 19% for micronuclear limited sequences and 17% for macronuclear retained sequences flanking micronuclear specific regions. The 75 available T. thermophila protein coding sequences favored codons ending in T and, where possible, avoided those with G in the third position. Highly expressed genes were relatively G + C-rich and exhibited an extremely biased pattern of codon usage while developmentally regulated genes were more A + T-rich and showed less codon usage bias. Regions immediately preceding Tetrahymena translation initiator codons were generally A-rich. For the 60 stop codons examined, the frequency of G in the end + 1 site was much higher than expected whereas C never occupied this position.  相似文献   

14.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

15.
J. L. Boore  W. M. Brown 《Genetics》1994,138(2):423-443
The DNA sequence of the 15,532-base pair (bp) mitochondrial DNA (mtDNA) of the chiton Katharina tunicata has been determined. The 37 genes typical of metazoan mtDNA are present: 13 for protein subunits involved in oxidative phosphorylation, 2 for rRNAs and 22 for tRNAs. The gene arrangement resembles those of arthropods much more than that of another mollusc, the bivalve Mytilus edulis. Most genes abut directly or overlap, and abbreviated stop codons are inferred for four genes. Four junctions between adjacent pairs of protein genes lack intervening tRNA genes; however, at each of these junctions there is a sequence immediately adjacent to the start codon of the downstream gene that is capable of forming a stem-and-loop structure. Analysis of the tRNA gene sequences suggests that the D arm is unpaired in tRNA(ser(AGN)), which is typical of metazoan mtDNAs, and also in tRNA(ser(UCN)), a condition found previously only in nematode mtDNAs. There are two additional sequences in Katharina mtDNA that can be folded into structures resembling tRNAs; whether these are functional genes is unknown. All possible codons except the stop codons TAA and TAG are used in the protein-encoding genes, and Katharina mtDNA appears to use the same variation of the mitochondrial genetic code that is used in Drosophila and Mytilus. Translation initiates at the codons ATG, ATA and GTG. A + T richness appears to have affected codon usage patterns and, perhaps, the amino acid composition of the encoded proteins. A 142-bp non-coding region between tRNA(glu) and CO3 contains a 72-bp tract of alternating A and T.  相似文献   

16.
The RAD1 gene of Saccharomyces cerevisiae is involved in excision repair of damaged DNA. The nucleotide sequence of the RAD1 gene presented here shows an open reading frame of 3,300 nucleotides. Two ATG codons occur in the open reading frame at positions +1 and +334, respectively. Since a deletion of about 2.7 kilobases of DNA from the 5' region of the RAD1 gene, which also deletes the +1 ATG and 11 additional codons in the RAD1 open reading frame, partially complements UV sensitivity of a rad1 delta mutant, we examined the role of the +1 ATG and +334 ATG codons in translation initiation of RAD1 protein. Mutation of the +1 ATG codon to ATC affected the complementation ability of the RAD1 gene, whereas mutation of the +334 ATG codon to ATC showed no discernible effect on RAD1 function. These results indicate that translation of RAD1 protein is initiated from the +1 ATG codon. Productive in-frame RAD1-lacZ fusions showed that the RAD1 open reading frame is expressed in yeasts. The RAD1-encoded protein contains 1,100 amino acids with a molecular weight of 126,360.  相似文献   

17.
Compositional distributions in three different codon positions as well as codon usage biases of all available DNA sequences of Buchnera aphidicola genome have been analyzed. It was observed that GC levels among the three codon positions is I>II>III as observed in other extremely high AT rich organisms. B. aphidicola being an AT rich organism is expected to have A and/or T at the third positions of codons. Overall codon usage analyses indicate that A and/or T ending codons are predominant in this organism and some particular amino acids are abundant in the coding region of genes. However, multivariate statistical analysis indicates two major trends in the codon usage variation among the genes; one being strongly correlated with the GC contents at the third synonymous positions of codons, and the other being associated with the expression level of genes. Moreover, codon usage biases of the highly expressed genes are almost identical with the overall codon usage biases of all the genes of this organism. These observations suggest that mutational bias is the main factor in determining the codon usage variation among the genes in B. aphidicola.  相似文献   

18.
psbA基因是叶绿体基因组中一个重要的光调控基因,编码光和系统Ⅱ反应中心的D1蛋白。根据叶绿体基因组序列高度保守的特性,利用菜茵衣藻(Chlamydomonasreinhardtii)psbA基因的保守序列(基因登录号:HQ667991.1)设计引物,采用PCR步移的方法从亚心型扁藻(Platymonassubcordiformis)基因组DNA中克隆到psbA基因全长(基因登录号:KF528742)。序列分析表明,亚心型扁藻psbA基因全长1939bp,编码区长度为1062bp,推导编码353个氨基酸,包括4个赖氨酸残基。有效密码子数显示脚删基因具有明显的密码子偏好性,并且偏好使用以A/T结尾的密码子。相对同义密码子使用度表明25个密码子在编码使用时具有偏好性,其中20个密码子以A/T碱基结尾,占到80%。其终止密码子使用了TAG。  相似文献   

19.
20.
The nucleotide sequence of the Escherichia coli dnaC gene and the primary structure of the dnaC protein were determined. The NH2-terminal amino acid sequence of the dnaC protein matched that predicted from the nucleotide sequence of the 735-base pair coding region. The dnaC gene lacks characteristic promoter structures; neither the "Pribnow box" nor the "-35 sequence" was detected within 222 base pairs upstream from the initiator ATG codon. There is, however, a typical Shine-Dalgarno sequence 7-10 base pairs before the ATG codon. An upstream open reading frame, separated by just 2 base pairs from the coding region of dnaC, encodes the COOH-terminal half of the dnaT product (protein i; Masai, H., Bond, M. W., and Arai, K. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 1256-1260). The dnaC protein contains 245 amino acids with a calculated molecular weight of 27,894 consistent with the observed value (29,000). Similar to dnaG and dnaT, dnaC uses several minor codons; the significance of these minor codons to the low level expression of the protein product in E. coli cells remains to be determined. The in vitro site-directed mutagenesis method was employed to determine the functional region involved in interaction with dnaB protein. The first cysteine residue located in the NH2-terminal region of the dnaC protein (Cys69) was shown to be important for this activity. Overall sequence homology between dnaC protein and lambda P protein, functionally analogous to the dnaC protein in the lambda phage DNA replication, is not extensive. There are, however, several short stretches of homologous regions including the NH2-terminal eight amino acids and the Cys78 region of dnaC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号