首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.  相似文献   

2.
3.
Lee T  Winter C  Marticke SS  Lee A  Luo L 《Neuron》2000,25(2):307-316
The pleiotropic functions of small GTPase Rho present a challenge to its genetic analysis in multicellular organisms. We report here the use of the MARCM (mosaic analysis with a repressible cell marker) system to analyze the function of RhoA in the developing Drosophila brain. Clones of cells homozygous for null RhoA mutations were specifically labeled in the mushroom body (MB) neurons of mosaic brains. We found that RhoA is required for neuroblast (Nb) proliferation but not for neuronal survival. Surprisingly, RhoA is not required for MB neurons to establish normal axon projections. However, neurons lacking RhoA overextend their dendrites, and expression of activated RhoA causes a reduction of dendritic complexity. Thus, RhoA is an important regulator of dendritic morphogenesis, while distinct mechanisms are used for axonal morphogenesis.  相似文献   

4.
B Z Shilo 《FASEB journal》1992,6(11):2915-2922
Communication between cells is a fundamental component of development and morphogenesis. Identification of the molecules mediating cell-cell communication is crucial for elucidation of the molecular basis of these processes. Receptor tyrosine kinases (RTKs) appear to play a central role in this context by transmitting into cells information dictating their fate. The functions of RTKs in Drosophila are extremely diverse, and include maternal determination of embryonic polarity (torso and torpedo), determination of neuroblast identity (faint little ball), and guidance of tracheal cell migration in the embryo (breathless). During compound eye development, RTKs affect the number of photoreceptor clusters (Ellipse) and the determination of photoreceptor R7 identity (sevenless). The phenotypes of mutations in RTK loci serve as a starting point for understanding processes dictating cell identity at the level of the whole organism. Recently, they have also begun to provide a basis for selection of second-site suppressor mutations, encoding additional elements in their signal transduction pathway. Common themes between the functions, regulation, and signal transduction pathways of Drosophila RTKs are drawn.  相似文献   

5.
The transmembrane receptor Patched regulates several developmental processes in both invertebrates and vertebrates. In vertebrates, Patched also acts as a tumor suppressor. The Patched pathway normally operates by negatively regulating Smoothened, a G-protein-coupled receptor; binding of Hedgehog ligand to Patched relieves this negative interaction and allows signaling by Smoothened. We show that Ptc regulates Drosophila head development by promoting cell proliferation in the eye-antennal disc. During head morphogenesis, Patched positively interacts with Smoothened, which leads to the activation of Activin type I receptor Baboon and stimulation of cell proliferation in the eye-antennal disc. Thus, loss of Ptc or Smoothened activity affects cell proliferation in the eye-antennal disc and results in adult head capsule defects. Similarly, reducing the dose of smoothened in a patched background enhances the head defects. Consistent with these results, gain-of-function Hedgehog interferes with the activation of Baboon by Patched and Smoothened, leading to a similar head capsule defect. Expression of an activated form of Baboon in the patched domain in a patched mutant background completely rescues the head defects. These results provide insight into head morphogenesis, a process we know very little about, and reveal an unexpected non-canonical positive signaling pathway in which Patched and Smoothened function to promote cell proliferation as opposed to repressing it.  相似文献   

6.
7.
The generation of the appropriate types and numbers of mature neurons during the development of the spinal cord requires the careful coordination of patterning, proliferation, and differentiation. In the dorsal neural tube, this coordination is achieved by the combined action of multiple ligands of both the Wnt and TGF-beta families, and their effectors, such as the bHLH proteins. TGF-beta signaling acting through the BMP receptors is necessary for the generation of several dorsal interneuron types. Other TGF-beta ligands expressed in the dorsal neural tube interact with the Activin receptors, which signal via a different set of SMAD proteins than BMPs. The effects of Activin signaling on the developing neural tube have not been described. Here we have activated the Activin signal transduction pathway in a cell-autonomous manner in the developing chick neural tube. We find that a constitutively active Activin receptor promotes differentiation throughout the neural tube. Although most differentiated cell populations are unaffected by Activin signaling, the number of dorsal interneuron 3 (dI3) cells is specifically increased. Our data suggest that Activin signaling may promote the formation of the dI3 precursor cells within a region circumscribed by BMP signaling and that this function is not dependent upon BMP signaling.  相似文献   

8.
9.
An important question in stem cell biology is how a cell decides to self-renew or differentiate. Drosophila neuroblasts divide asymmetrically to self-renew and generate differentiating progeny called GMCs. Here, we report that the Brain tumor (Brat) translation repressor is partitioned into GMCs via direct interaction with the Miranda scaffolding protein. In brat mutants, another Miranda cargo protein (Prospero) is not partitioned into GMCs, GMCs fail to downregulate neuroblast gene expression, and there is a massive increase in neuroblast numbers. Single neuroblast clones lacking Prospero have a similar phenotype. We conclude that Brat suppresses neuroblast stem cell self-renewal and promotes neuronal differentiation.  相似文献   

10.
Chell JM  Brand AH 《Cell》2010,143(7):1161-1173
The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation?is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.  相似文献   

11.
12.
13.
14.
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.  相似文献   

15.
Lee T  Luo L 《Neuron》1999,22(3):451-461
We describe a genetic mosaic system in Drosophila, in which a dominant repressor of a cell marker is placed in trans to a mutant gene of interest. Mitotic recombination events between homologous chromosomes generate homozygous mutant cells, which are exclusively labeled due to loss of the repressor. Using this system, we are able to visualize axonal projections and dendritic elaboration in large neuroblast clones and single neuron clones with a membrane-targeted GFP marker. This new method allows for the study of gene functions in neuroblast proliferation, axon guidance, and dendritic elaboration in the complex central nervous system. As an example, we show that the short stop gene is required in mushroom body neurons for the extension and guidance of their axons.  相似文献   

16.
Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis. The Dab mutant interacts genetically with mutations in Abl, and with mutations in the Abl accessory factors trio and enabled (ena). Genetic epistasis tests show that Dab functions upstream of Abl and ena, and, consistent with this, we show that Dab is required for the subcellular localization of these two proteins. We therefore infer that Dab is a bona fide component of the core Abl signaling pathway in Drosophila.  相似文献   

17.
Wnt signalling is an evolutionarily conserved pathway that directs cell-fate determination and morphogenesis during metazoan development. Wnt ligands are secreted glycoproteins that act at a distance causing a wide range of cellular responses from stem cell maintenance to cell death and cell proliferation. How Wnt ligands cause such disparate responses is not known, but one possibility is that different outcomes are due to different receptors. Here, we examine PTK7/Otk, a transmembrane receptor that controls a variety of developmental and physiological processes including the regulation of cell polarity, cell migration and invasion. PTK7/Otk co-precipitates canonical Wnt3a and Wnt8, indicating a role in Wnt signalling, but PTK7 inhibits rather than activates canonical Wnt activity in Xenopus, Drosophila and luciferase reporter assays. Loss of PTK7 function activates canonical Wnt signalling and epistasis experiments place PTK7 at the level of the Frizzled receptor. In Drosophila, Otk interacts with Wnt4 and opposes canonical Wnt signalling in embryonic patterning. We propose a model where PTK7/Otk functions in non-canonical Wnt signalling by turning off the canonical signalling branch.  相似文献   

18.
Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1 (suppressor-of-G2-allele-of-skp1) that had fewer neuroblasts. We found that sgt1 neuroblasts have two polarity phenotypes: failure to establish apical cortical polarity at prophase, and lack of cortical Scribble localization throughout the cell cycle. Apical cortical polarity was partially restored at metaphase by a microtubule-induced cortical polarity pathway. Double mutants lacking Sgt1 and Pins (a microtubule-induced polarity pathway component) resulted in neuroblasts without detectable cortical polarity and formation of "neuroblast tumors." Mutants in hsp83 (encoding the predicted Sgt1-binding protein Hsp90), LKB1, or AMPKα all show similar prophase apical cortical polarity defects (but no Scribble phenotype), and activated AMPKα rescued the sgt1 mutant phenotype. We propose that an Sgt1/Hsp90-LKB1-AMPK pathway acts redundantly with a microtubule-induced polarity pathway to generate neuroblast cortical polarity, and the absence of neuroblast cortical polarity can produce neuroblast tumors.  相似文献   

19.
Cyclooxygenase-2 (COX-2) function has been implicated in a number of physiological processes, including inflammatory responses, synaptic transmission, and synaptic plasticity in the brain. However, the specific role of COX-2 in exercise-induced neurogenesis is still debatable. Here, we assessed the role of COX-2 in exercise-induced plasticity by comparing COX-2 knockout mice to wild-type control littermates. We investigated the number of neural stem cells, and the degree of cell proliferation and neuronal differentiation in COX-2 knockout and its wild-type mice that either exercised or remained inactive. Wild-type and COX-2 knockout mice were put on a treadmill and were either sedentary or were forced to run 1 h/day for five consecutive days at a pace of 10–12 m/min for 5 weeks. Loss of COX-2 expression in the knockout mice was confirmed with two measures: (1) COX immunolabeling in the hippocampus, and (2) the identification of abnormal kidney development using hematoxylin and eosin staining, including subcapsular glomerular hypoplasia and hypertrophy of the deeper cortical glomeruli. Compared to wild-type mice, COX-2 knockout mice exhibited a significant reduction in the neural stem cells (nestin-positive cells), cell proliferation (Ki67-positive cells), and neuroblast differentiation (doublecortin-positive cells). In contrast, exercise significantly increased the neural stem cells, cell proliferation, and neuroblast differentiation in both the wild-type and COX-2 knockout mice although the NeuN-immunoreactive neurons were similar in all groups. Expression of phosphorylated cAMP-response element binding protein was decreased in knockout mice. Exercise increased its expression in the subgranular zone of the dentate gyrus in both wild-type and knockout mice. These results suggest that the COX-2 pathway is one of important factors on neural stem cells, cell proliferation and neuroblast differentiation in sedentary mice. The ability of exercise to increase these types of neural plasticity, regardless of COX-2 signaling, suggests that the effects of exercise on neural stem cells, cell proliferation, and neuroblast differentiation are induced via a pathway that is independent of COX-2.  相似文献   

20.
Bello BC  Hirth F  Gould AP 《Neuron》2003,37(2):209-219
Postembryonic neuroblasts are stem cell-like precursors that generate most neurons of the adult Drosophila central nervous system (CNS). Their capacity to divide is modulated along the anterior-posterior body axis, but the mechanism underlying this is unclear. We use clonal analysis of identified precursors in the abdomen to show that neuron production stops because the cell death program is activated in the neuroblast while it is still engaged in the cell cycle. A burst of expression of the Hox protein Abdominal-A (AbdA) specifies the time at which apoptosis occurs, thereby determining the final number of progeny that each neuroblast generates. These studies identify a mechanism linking the Hox axial patterning system to neural proliferation, and this involves temporal regulation of precursor cell death rather than the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号