首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have sequenced mouse tRNA genes from two recombinant lambda phage. An 1800 bp sequence from one phage contains 3 tRNA genes, potentially encoding tRNAAsp, tRNAGly, and tRNAGlu, separated by spacer sequences of 587 bp and 436 bp, respectively. The mouse tRNA gene cluster is homologous to a rat sequence (Sekiya et al., 1981, Nucleic Acids Res. 9, 2239-2250). The mouse and rat tRNAAsp and tRNAGly coding regions are identical. The tRNAGlu coding regions differ at two positions. The flanking sequences contain 3 non-homologous areas: a c. 100 bp insertion in the first mouse spacer, short tandemly repeated sequences in the second spacers and unrelated sequences at the 3' ends of the clusters. In contrast, most of the flanking regions are homologous, consisting of strings of consecutive, identical residues (5-17 bp) separated by single base differences and short insertions/deletions. The latter are often associated with short repeats. The homology of the flanking regions is c. 75%, similar to other murine genes. The second lambda clone contains a solitary mouse tRNAAsp gene. The coding region is identical to that of the clustered tRNAAsp gene. The 5' flanking regions of the two genes contain homologous areas (10-25 bp) separated by unrelated sequences. Overall, the flanking regions of the two mouse tRNAAsp genes are less homologous than those of the mouse and rat clusters.  相似文献   

2.
3.
The positional specificity in the aminoacylation of Escherichia coli tRNAGly by its cognate aminoacyl-tRNA synthetase has been studied using tRNAGlys terminating in 2'- or 3'-deoxyadenosine under conditions believed to alter tRNA conformation. Although E. coli tRNAGly terminating in 3'-deoxyadenosine has been reported not to be a good substrate for activation by the homologous glycyl-tRNA synthetase, by systematic variation of the conditions employed for aminoacylation it was possible to activate this tRNA to essentially the same extent as unmodified tRNAGly. Activation of tRNAGly terminating in 3'-deoxyadenosine was carried out optimally at 45 degrees C in an incubation mixture containing 0.3-0.4 M NaCl; 10% methanol, ethanol, and dimethyl sulfoxide were found to facilitate activation of the modified tRNA. Interestingly, the conditions employed to enhance activation of this modified tRNAGly had no effect on the activation of unmodified tRNAGly or tRNAGly terminating in 2'-deoxyadenosine. These experiments afford insight into the activation of tRNAGly by glycyl-tRNA synthetase and provide facile access to positionally defined, isomeric glycl-tRNAGlys.  相似文献   

4.
One Drosophila melanogaster tRNAGly gene occurs on each 1.1-2.0 kb unit of a direct duplication at chromosomal region 56F. The nucleotide sequence of the gene and the 5' flanking region has been determined. The non-transcribed strand sequence of the tRNA gene is: 5' GCATCGGTGGTTCAGTGGTAGAATGCTCGCCTGCCACGCGGGCGGCCCGGGTTCGATTCCCGGCCGATGCA 3'. This nucleotide sequence is identical to that of the major glycine tRNA in Bombyx mori posterior silk gland. Within the 22 kb region mapped, additional tRNA genes are found, an observation consistent with reports that genes for other isoacceptors are present at this locus.  相似文献   

5.
In potato ( Solanum tuberosum ) mitochondria, about two-thirds of the tRNAs are encoded by the mitochondrial genome and one-third is imported from the cytosol. In the case of tRNAGly isoacceptors, a mitochondrial-encoded tRNAGly(GCC) was found in potato mitochondria, but this is likely to be insufficient to decode the four GGN glycine codons. In this work, we identified a cytosolic tRNAGly(UCC), which was found to be present in S.tuberosum mitochondria. The cytosolic tRNAGly(CCC) was also present in mitochondria, but to a lesser extent. By contrast, the cytosolic tRNAGly(GCC) could not be detected in mitochondria. This selective import of tRNAGly isoacceptors into S. tuberosum mitochondria raises further questions about the mechanism under-lying the specificity of the import process.  相似文献   

6.
Amino acid assignments of metazoan mitochondrial codons AGA/AGG are known to vary among animal species; arginine in Cnidaria, serine in invertebrates and stop in vertebrates. We recently found that in the mitochondria of the ascidian Halocynthia roretzi these codons are exceptionally used for glycine, and postulated that they are probably decoded by a tRNA(UCU). In order to verify this notion unambig-uously, we determined the complete RNA sequence of the mitochondrial tRNA(UCU) presumed to decode codons AGA/AGG in the ascidian mitochondria, and found it to have an unidentified U derivative at the anticodon first position. We then identified the amino acids attached to the tRNA(U*CU), as well as to the conventional tRNAGly(UCC) with an unmodified U34, in vivo. The results clearly demonstrated that glycine was attached to both tRNAs. Since no other tRNA capable of decoding codons AGA/AGG has been found in the mitochondrial genome, it is most probable that this tRNA(U*CU) does actually translate codons AGA/AGG as glycine in vivo. Sequencing of tRNASer(GCU), which is thought to recognize only codons AGU/AGC, revealed that it has an unmodified guanosine at position 34, as is the case with vertebrate mitochondrial tRNASer(GCU) for codons AGA/AGG. It was thus concluded that in the ascidian, codons AGU/AGC are read as serine by tRNASer(GCU), whereas AGA/AGG are read as glycine by an extra tRNAGly(U*CU). The possible origin of this unorthodox genetic code is discussed.  相似文献   

7.
M H Mazauric  H Roy  D Kern 《Biochemistry》1999,38(40):13094-13105
The systems of tRNA glycylation belong to the most complex aminoacylation systems since neither the oligomeric structure of glycyl-tRNA synthetases (GlyRS) nor the discriminator bases in tRNAGly are conserved in the phylae. To better understand the structure-function relationship in glycylation systems of various origins and the functional peculiarities related to their structural divergences, the elements in tRNA conferring its glycine identity in Thermus thermophilus were characterized and compared to those of other systems. Thermophilic identity is conferred by the G1-C72, C2-G71, G3-C70, and C50-G64 pairs together with the G10, U16, C35, and C36 single residues. In contrast to most other aminoacylation systems, the discriminator base is not directly involved in identity. Transplantation of these elements in tRNAAsp and tRNAPhe converts specificity toward glycine albeit conservation of nucleotide 73. Analysis of the functional interrelation of the identity elements shows coupling in synthetase recognition of the elements from anticodon and G10 whereas those from acceptor arm are recognized independently. Despite nondirect implication in identity, the discriminator base contributes cooperatively with C36 in specificity of glycylation. The link between the structural heterogeneity and the functional divergence of the glycylation systems and the phylogenic interrelation of these systems were approached by comparing the ability of GlyRSs of various phylae to glycylate heterologous tRNAGly. Dimeric GlyRSs from mammalian and archaebacteria acylate efficiently only eukaryotic and archaebacterial tRNAGly with a discriminatory A73, whereas tetrameric Escherichia coli GlyRS acylates only eubacterial tRNAGly with a discriminatory U73. In contrast, dimeric yeast GlyRS acylates efficiently both eukaryotic and archaebacterial tRNAGly as well as peculiar prokaryotic isoacceptors. Species specificity is lost with the dimeric GlyRS from Thermus thermophilus that acylates efficiently eubacterial, archaebacterial, and eukaryotic tRNAGly. These features are discussed in the context of the evolution of the glycylation systems and the phylogenic interrelation of the organisms.  相似文献   

8.
The plastid (chloroplast) genomes of seed plants typically encode 30 tRNAs. Employing wobble and superwobble mechanisms, most codon boxes are read by only one or two tRNA species. The reduced set of plastid tRNAs follows the evolutionary trend of organellar genomes to shrink in size and coding capacity. A notable exception is the AUN codon box specifying methionine and isoleucine, which is decoded by four tRNA species in nearly all seed plants. However, three of these four tRNA genes were lost from the genomes of some parasitic plastid-containing lineages, possibly suggesting that less than four tRNA species could be sufficient to decode the triplets in the AUN box. To test this hypothesis, we have performed knockout experiments for the four AUN-decoding tRNAs in tobacco (Nicotiana tabacum) plastids. We find that all four tRNA genes are essential under both autotrophic and heterotrophic growth conditions, possibly suggesting tRNA import into plastids of parasitic plastid-bearing species. Phylogenetic analysis of the four plastid tRNA genes reveals striking conservation of all those bacterial features that are involved in discrimination between the different tRNA species containing CAU anticodons.  相似文献   

9.
The maize chloroplast gene encoding tRNA Leu UAA has been sequenced. It contains a 458 base pair intron between the first and second bases of the anticodon. The tRNA is 88 nucleotides long (the 3'-terminal CCA sequence included which, however, is not encoded by the gene) and differs in only four nucleotides (modified nucleotides are not considered) from the corresponding isoacceptor from bean chloroplasts. The unusual position of the intron in this maize chloroplast tRNA gene suggests a splicing model different from that generally accepted for eukaryotic split tRNA genes.  相似文献   

10.
The barley chloroplast DNA atpBE, trnM2, and trnV1 loci.   总被引:10,自引:2,他引:8       下载免费PDF全文
The nucleotide sequence of a barley chloroplast DNA 3.7 kb SmaI-HindIII fragment is presented. This fragment contains atpBE, the genes for the beta and epsilon subunits of ATPase; trnM2, the gene for tRNA2met; and trnV1, the gene for tRNA1va1. The atpE-trnM2 interval is 126 bp and trnM2 is transcribed towards atpBE. The trnM2-trnV1 interval is 203 bp and trnV1 is transcribed away from trnM2. The trnV1 locus has a 597 bp intervening sequence. the organization and sequences of these genes are compared to the analogous genes from maize and tobacco chloroplast DNA. Using the latter comparisons the nature of sequence divergence between chloroplast DNAs is discussed.  相似文献   

11.
12.
The dihydrouracil residue at position 20 of Escherichia coli tRNAGly1 has been replaced by the photoaffinity reagent, N-(4-azido-2-nitrophenyl)glycyl hydrazide (AGH). The location of the substituent was confirmed by the susceptibility of the modified tRNA to cleavage with aniline. When N-acetylglycyl-tRNAGly1 derivatized with AGH was bound noncovalently to the P site of E. coli 70 S ribosomes, 5-6% on average was photochemically cross-linked to the ribosomal particles in a reaction requiring poly(G,U), irradiation and the presence of the AGH label in the tRNA. Approximately two-thirds of the covalently attached tRNA was associated with 16 S RNA in the 30 S subunit. This material was judged to be in the P site by the criterion of puromycin reactivity. As partial RNAase digestion of the tRNA-16 S RNA complex produced labeled fragments from both 5' and 3' segments of the rRNA, there appeared to be more than one site of cross-linking in the 30 S subunit. The small amount of N-acetylglycyl-tRNAGly1 associated with the 50 S subunit was also linked mainly to rRNA, but it was not puromycin-reactive.  相似文献   

13.
Summary The entire chloroplast genome of the monocot rice (Oryza sativa) has been sequenced and comprises 134525 bp. Predicted genes have been identified along with open reading frames (ORFs) conserved between rice and the previously sequenced chloroplast genomes, a dicot, tobacco (Nicotiana tabacum), and a liverwort (Marchantia polymorpha). The same complement of 30 tRNA and 4 rRNA genes has been conserved between rice and tobacco. Most ORFs extensively conserved betweenN. tabacum andM. polymorpha are also conserved intact in rice. However, several such ORFs are entirely absent in rice, or present only in severely truncated form. Structural changes are also apparent in the genome relative to tobacco. The inverted repeats, characteristic of chloroplast genome structure, have expanded outward to include several genes present only once per genome in tobacco and liverwort and the large single copy region has undergone a series of inversions which predate the divergence of the cereals. A chimeric tRNA pseudogene overlaps an apparent endpoint of the largest inversion, and a model invoking illegitimate recombination between tRNA genes is proposed which accounts simultaneously for the origin of this pseudogene, the large inversion and the creation of repeated sequences near the inversion endpoints.  相似文献   

14.
Summary The location and nucleotide sequences of tobacco chloroplast genes for tRNAIle (CAU), tRNALeu (CAA), tRNACys (GCA), tRNASer (UGA) and tRNAThr (GGU) (trnI-CAU, trnL-CAA, trnC-GCA, trnS-UGA and trnT-GGU, respectively) have been determined. The trnI and trnL are located in the inverted repeat region. The trnC, trnS and trnT are present in the large single copy region. These five tRNA genes together with the 25 different tRNA genes previously published have been compiled and compared. These 30 tRNA genes corresponding to 20 amino acids are most likely to be all of the tRNA genes encoded in tobacco chloroplast genome.This paper is dedicated to Professor Morio Ikehara on the occasion of his retirement from Osaka University in March 1986.  相似文献   

15.
16.
Hybridization studies of Euglena chloroplast 125I-labeled tRNAs to restriction fragments of Euglena chloroplast DNA have shown that the spacer between the 16S and 23S rRNA genes, in two and possibly all three of the ribosomal DNA units, contains genes for tRNAIle and tRNAAla, whereas a tRNA gene (for either tRNATrp or tRNAGlu) is located before probably all four 16S rRNA genes present on the chloroplast DNA molecule.  相似文献   

17.
Tobacco chloroplast tRNAs have been purified by two-dimensional polyacrylamide gel electrophoresis, identified by aminoacylation, labelled at their 3-end and hybridized to tobacco chloroplast DNA restriction fragments, in order to establish a tRNA gene map. These hybridization studies have revealed the localization of at least seven genes in each inverted repeat region, a minimum of 22 tRNA genes in the large single copy region and one tRNA gene in the small single copy region. Comparison of the tobacco chloroplast tRNA gene map to that of maize shows many similarities, but also some differences suggesting that DNA sequence rearrangements have occurred in the chloroplast genome during evolution.  相似文献   

18.
Summary The chloroplast genome contains genes for a large and probably complete set of tRNAs. These genes are unique in sharing attributes of both nuclear and bacterial tRNA genes. Two chloroplast tRNA genes from Zea mays are described here. tV-UAC, encoding a valine tRNA with the anticodon UAC, contains a 603 bp intron and is highly homologous, both in coding regions and in the intron, to the analogous gene from tobacco described by Deno et al. (Nucleic Acids Res 10:7511–7520, 1982). It is located near the gene for the beta and epsilon subunits of the CF1 complex. (Krebbers et al.: Nucleic Acids Res 10:4985–5002, 1982). The gene tS-UGA, encoding a serine tRNA with the anticodon UGA, is located 41 kbp 3 to tV-UAC. Both genes contain promoter-like sequences in their 5 flanking regions.  相似文献   

19.
用氨基酸选择性地保护相应的tRNA同功受体,使其3′端羟基不被过碘酸氧化,去氨酰化后用32pCp标记、双向聚丙烯酰胺凝胶电泳分离的方法,分析了蓖麻蚕后部丝腺体tRNAAla和tRNAGly同功受体相对含量的变化。从5龄期24小时到85小时,这两种tRNA同功受体的数目和电泳相对位置没有明显变化,tRNAAla主要分为四个同功受体,tRNAGly主要为三个。tRNAAla同功受体的相对含量有变化,其中tRNA3Ala增加10%,tRNA2Ala下降11%,tRNAGly同功受体的相对含量无明显变化。  相似文献   

20.
Analysis of codon usage for chick Type I collagen indicates that 89% of glycine codons are GGU/C. Since collagens are one-third glycine, chick Type I collagen synthesis should require large amounts of tRNAGly with the anticodon GCC. Earlier chromatographic studies of chick tRNA had indicated that connective tissues showed altered tRNAGly isoacceptor profiles [P. J. Christner and J. Rosenbloom (1976) Arch. Biochem. Biophys. 172, 399-409; H. J. Drabkin and L. N. Lukens (1978) J. Biol. Chem. 253, 6233-6241]. We have therefore used both two-dimensional gel electrophoresis and hybridization analysis to investigate whether collagen synthesis in chick connective tissues is associated with expression of a novel tRNAGly. Liver and calvaria tRNAs produced qualitatively similar patterns when separated on 2-D gels. Northern blots of 2-D-separated tRNAs from liver and calvaria, when hybridized to genes for vertebrate tRNAGly isoacceptors with GCC or UCC anticodons, showed hybridization to the same tRNAs in both tissues. Quantitation of tRNA species by dot blot hybridization indicated an increase in levels of the tRNAGly isoacceptor with anticodon GCC. Tissues synthesizing Type I collagen had a two- to threefold increase in this tRNA while tissues synthesizing Type II collagen showed a more modest increase. We conclude that elevated tRNAGly levels associated with collagen synthesis are due to increased amounts of the same isoacceptor which is the major tRNAGly in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号