首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable electrical potential differences can be measured by means of conventional glass microelectrodes across the cell membrane of renal tubule cells and across the epithelial wall of single tubules in the doubly perfused kidney of Necturus. These measurements have been carried out with amphibian Ringer's solution, and with solutions of altered ionic composition. The proximal tubule cell has been found to be electrically asymmetrical inasmuch as a smaller potential difference is maintained across the luminal cell membrane than across the peritubular cell boundary. The tubule lumen is always electrically negative with respect to the peritubular extracellular medium. Observations on the effectiveness of potassium ions in depolarizing single tubule cells indicate that the transmembrane potential is essentially an inverse function of the logarithm of the external potassium concentration. The behavior of the peritubular transmembrane potential resembles more closely an ideal potassium electrode than that of the luminal transmembrane potential. From these results, and the effects of various ionic substitutions on the electrical profile of the renal tubular epithelium, a thesis concerning the origin of the observed potential differences is presented. A sodium extrusion mechanism is considered to be located at the peritubular cell boundary, and reasons are given for the hypothesis that the electrical asymmetry across the proximal renal tubule cell could arise as a consequence of differences in the relative sodium and potassium permeability at the luminal and peritubular cell boundaries.  相似文献   

2.
利用光镜组织化学反应对中华鳖肾单位的结构和组织化学特性进行了详细的观察和分析。结果表明,中华鳖肾脏为分叶形的实质器官,肾小叶由被膜和实质组成,实质无髓质和皮质之分,但可以区分为外侧区和内侧区。外侧区嗜酸性,主要分布有近端小管和集合管。内侧区呈弱嗜酸性,肾小体、颈段、中间段和远端小管主要分布在内侧区。肾小球PAS反应呈阳性,但其琥珀酸脱氢酶(SDH)弱阳性,碱性磷酸酶(ALPase)、Na+/K+-ATPase和阿利新兰(AB)反应为阴性。足细胞酸性磷酸酶(ACPase)反应呈阳性。近端小管刷状缘嗜伊红,PAS反应以及ALPase、ACPase和Na+/K+-ATPase酶反应呈阳性,而SDH弱阳性。中间段、远端小管、集合管弱嗜酸性,SDH阳性。中间段Na+/K+-ATPase弱阳性。远端小管细胞侧面呈PAS阳性,腔面显示AB阳性。集合管胞质含有许多ACPase阳性颗粒,腔面呈PAS强阳性,AB阳性。甲苯胺兰(TB)染色可见集合管腔面有阳性颗粒,肾小管上皮含有亮、暗两种细胞。上述组化反应和分布结果表明,鳖的肾小管细胞类型较多,近端小管在原尿的重吸收中起主要作用,远端小管和集合管具有分泌黏液作用。中华鳖肾单位的结构与组化特性不仅与哺乳类和鸟类有一定差异,也与其他爬行动物不完全相同。    相似文献   

3.
Acute pyelonephritis was induced in rats by temporary unilateral ureteric obstruction and the intravenous injection of Escherichia coli. Animals were sacrificed 48 h after infection and changes in renal cortical tubules due to the presence of bacteria were studied. Bacteria appeared and multiplied in the tubular lumina and proximal tubular epithelial cells endocytosed the microorganisms in large numbers. Coalescence of phagosomes with lysosomes resulted in the surrounding of engulfed bacteria with acid phosphatase. However, the lysosomal apparatus of the cells did not eliminate Escherichia coli since the bacteria multiplied within phagosomes and destroyed the normal cell architecture. The peritubular interstitial inflammatory infiltrate caused ischemia of tubules, enhancing bacterial damage to the proximal tubules. The cytoplasm of the injured tubular cells was sometimes detached from the basement membrane. Cells of the distal tubules and collecting ducts did not show significant endocytosis or bacterial tubular damage.  相似文献   

4.
5.
The localization of gamma-Glutamyltransferase (gamma-GT, E.C.2.3.2.2) was studied on isolated tubular fragments from rat kidney cortex immunocytochemically. Monospecific antibodies raised in the goat against rat kidney gamma-GT were used. Antigoat immunoglobulin from the rabbit conjugated with ferritin was used for visualisation of the antibody binding sites. The enzyme was found to be localized at the brush border membrane of proximal tubules, the luminal membrane of distal tubules and collecting duct segments. The enzyme could further be localized on the antiluminal or basolateral cell membranes of proximal and distal tubular fragments, whereas no such localization was verified for collecting duct segments. The role of this basolateral gamma-GT localization in context with the kidney's ability to extract over 83% of the renal arterial glutathione (GSH) input during a single passage is discussed.  相似文献   

6.
Rabbit proximal nephron segments were microperfused in vitro to determine whether active contraluminal uptake of serine occurs in the renal proximal tubule during bath-to-lumen transport (influx) of the L- and D-isomers in the convoluted (pars convoluta) and straight (pars recta) segments. It is known that several amino acids are actively reabsorbed in the proximal nephron by a mechanism involving co-transport with sodium at the luminal membrane. There is some evidence that certain amino acids may also be accumulated across the contraluminal membrane by an energy-dependent mechanism, indicating that net reabsorption is the result of two oppositely directed active transport processes. During in vitro microperfusion of rabbit proximal nephron segments in this study, inward movement of L- and D-serine occurred in a bath-to-cell direction against a concentration gradient in the range 305-2735:1, indicating active uptake at the contraluminal membrane. The concentration gradients were maintained during influx of both isomers of serine in the proximal tubule. L-Serine accumulation by tubular cells was similar in the pars convoluta and recta, and significantly greater than that of D-serine, which was the same in both regions of the proximal tubule. The data support the conclusion that renal handling of serine involves active contraluminal uptake of the L- and D-isomers in both regions of the proximal tubule, and suggest that contraluminal events play an important role in renal handling of amino acids.  相似文献   

7.
IQGAP1 is a multifunctional junction molecule that is involved in cell migration, proliferation, differentiation, cell polarity, and cell–cell adhesion. It is highly expressed in the kidney and has recently been identified in the glomerular basement membrane as a nephrin-associated protein. However, the distribution of IQGAP1 in renal tubular epithelial cells is unknown. We performed confocal microscopic studies to localize IQGAP1 in each nephron segment using dual immunofluorescence staining with various antibodies against segment-specific markers. We found that IQGAP1 was strongly expressed in the distal convoluted tubule (DCT), collecting duct, and macula densa and moderately in the thick ascending limb and proximal tubule. In the DCT, the IQGAP1–F-actin complex forms a comb-like structure with multiple parallel spikes sitting on the basal membrane. In the macula densa cells, IQGAP1 is strongly expressed in the apical membrane, whereas in type A intercalated cells, IQGAP1 is expressed in the basolateral membrane, where it colocalizes with anion exchanger 1, and in principal cells, it is diffusely expressed. In conclusion, we showed the expression and subcellular localization of IQGAP1 in various nephron segments. The site-specific expression pattern of this potent modulator of multiple biological pathways in the renal tubules suggests that IQGAP1 may have multiple important roles in various renal functions. (J Histochem Cytochem 56:659–666, 2008)  相似文献   

8.
Paraffin sections of mouse and rat kidney were stained with a battery of ten lectin-horseradish peroxidase conjugates and lectin binding was correlated with the ultrastructural distribution of periodate-reactive sugar residues as determined by the periodic acid-thiocarbohydrazide-silver proteinate technique. Various segments of the uriniferous tubule in both species showed differential affinity for labelled lectins. Significant differences were also evident between comparable tubular segments in mouse and rat kidneys. Neutral glycoconjugates containing terminal beta-galactose and terminal alpha-N-acetylgalactosamine were prevalent on the luminal surface of the proximal convoluted tubule in the rat, but alpha-N-acetylgalactosamine was absent in this site in the mouse. In both species, terminal N-acetylglucosamine was abundant in the brush border of proximal straight tubules but absent in proximal convolutions. Fucose was demonstrated in both proximal and distal segments of mouse kidney tubules but only in the distal nephron and collecting ducts in the rat. Lectin staining revealed striking heterogeneity in the structure and distribution of cellular glycoconjugates. Such cellular heterogeneity was previously unrecognizable with earlier histochemical methods. The marked cellular heterogeneity observed with several lectin-conjugates in distal convoluted tubules and collecting ducts of both species raises a prospect that lectins can provide specific markers for intercalated and principal cells in the mammalian kidney. Glycoconjugates containing terminal sialic acid and penultimate beta-galactose were present on vascular endothelium in both rodent kidneys, as were terminal alpha-galactose residues; but both species lacked reactivity for Ulex europeus I lectin in contrast to human vascular endothelial cells. The constant binding pattern of lectin conjugates allows convenient and precise differentiation of renal tubular segments and should prove valuable in the study of changes in kidney morphology promoted by experimental manipulation or pathologic changes.  相似文献   

9.
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.  相似文献   

10.
Membrane traffic after inhibition of endocytosis in renal proximal tubules   总被引:3,自引:0,他引:3  
This study was performed to examine quantitatively the cellular organelles involved in membrane recycling after inhibition of luminal endocytosis in renal proximal tubules. Paraffin oil was microinfused into rat renal proximal convoluted tubules to prevent luminal endocytosis. After 1-2 hr the kidneys were fixed by perfusion and prepared for electron microscopy. Segment 1 proximal tubules infused with paraffin oil and control tubules from the same kidney were studied. In addition we examined proximal tubules from kidneys fixed by immersion 30 sec after removal of the kidney. In the oil-infused tubules the large endocytic vacuoles (greater than 0.5 micron) disappeared, the amount of small endocytic vacuoles (less than 0.5 micron) was reduced to about 10%, and the amount of dense apical tubules was significantly increased. The dense apical tubules were very seldom seen connected to the apical plasma membrane in controls but this was occasionally observed in tubules fixed by immersion and relatively often in oil-infused tubules. An ultrastructural morphometric analysis substantiated and extended the qualitative observations and provided quantitative estimates of volumes and surface areas for large endocytic vacuoles, lysosomes, mitochondria, small endocytic vacuoles, and dense apical tubules in control and experimental tubules. The results strongly support the suggestion that the dense apical tubules located in the apical cytoplasm represent the vehicle for the recycling of membrane from endocytic vacuoles back to the plasma membrane, and show that in renal proximal tubule cells small and large endocytic vacuoles are transformed into dense apical tubules when endocytosis is stopped.  相似文献   

11.
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.  相似文献   

12.
Proximal and distal tubule suspensions were prepared from kidneys of Sprague-Dawley rats by an isolation procedure on a PercollR gradient. The marker enzymes alkaline phosphatase (brush border) and hexokinase (cytoplasmic) as well as p-aminohippurate transport capacity, gluconeogenic activity and electron microscopy were used to characterize the two kidney tubule suspensions. The results of this study indicate that cytochrome P-450 is localized to the proximal tubular cells and that the O-deethylation of 7- ethoxycoumarin was higher in the proximal than distal fraction. Both proximal and distal tubules showed glucuronidation and deacetylation capacities and a relatively equal distribution of non-protein sulfhydryls. These studies demonstrate metabolic heterogeneity of the nephron, the proximal tubule being the main site of renal xenobiotic metabolism. Understanding of metabolic heterogeneity of proximal and distal kidney tubules should provide important information regarding cell specific mechanisms of nephrotoxicity.  相似文献   

13.
Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.  相似文献   

14.
Transplantation of human kidney-derived cells is a potential therapeutic modality for promoting regeneration of diseased renal tissue. However, assays that determine the ability of candidate populations for renal cell therapy to undergo appropriate differentiation and morphogenesis are limited. We report here a rapid and humane assay for characterizing tubulogenic potency utilizing the well-established chorioallantoic membrane CAM) of the chick embryo. Adult human kidney-derived cells expanded in monolayer were suspended in Matrigel and grafted onto the CAM. After a week, grafts were assessed histologically. Strikingly, many of the renal cells self-organized into tubular structures. Host blood vessels penetrated and presumably fed the grafts. Immuno- and histochemical staining revealed that tubular structures were epithelial, but not blood vessels. Some of the cells both within and outside the tubules were dividing. Analysis for markers of proximal and distal renal tubules revealed that grafts contained individual cells of a proximal tubular phenotype and many tubules of distal tubule character. Our results demonstrate that the chick CAM is a useful xenograft system for screening for differentiation and morphogenesis in cells with potential use in renal regenerative medicine.  相似文献   

15.
Amphibians inhabit areas ranging from completely aqueous to terrestrial environments and move between water and land. The kidneys of all anurans are similar at the gross morphological level: the structure of their nephrons is related to habitat. According to the observation by light and electron microscopy, the cells that make up the nephron differ among species. Immunohistochemical studies using antibodies to various ATPases showed a significant species difference depending on habitat. The immunoreactivity for Na+,K(+)-ATPase was low in the proximal tubules but high in the basolateral membranes of early distal tubules to collecting ducts in all species. In the proximal tubule, apical membranes of the cells were slightly immunoreactive to H(+)-ATPase antibody in aquatic species. In the connecting tubule and the collecting duct, the apical membrane of intercalated cells was immunoreactive in all species. In aquatic species, H+,K(+)-ATPase immunoreactivity was observed in cell along the proximal, distal tubule to the collecting duct. However, H+,K(+)-ATPase was present along the intercalated cells of the distal segments from early distal to collecting tubules in terrestrial and semi-aquatic species. In the renal corpuscle, the neck segment and the intermediate segment, immunoreactivities to ion pumps were not observed in any of the species examined. Taking together our observations, we conclude that in the aquatic species, a large volume of plasma must be filtered in a large glomerulus and the ultrafiltrate components are reabsorbed along a large and long proximal segment of the nephron. Control of tubular transport may be poorly developed when a small short distal segment of the nephron is observed. On the contrary, terrestrial species have a long and well-developed distal segment and regulation mechanisms of tubular transport may have evolved in these segments. Thus, the development of the late distal segments of the nephron is one of the important factors for the terrestrial adaptation.  相似文献   

16.
Unilateral ureteral obstruction (UUO) is the most widely used animal model of progressive renal disease. Although renal interstitial fibrosis is commonly used as an end point, recent studies reveal that obstructive injury to the glomerulotubular junction leads to the formation of atubular glomeruli. To quantitate the effects of UUO on the remainder of the nephron, renal tubular and interstitial responses were characterized in mice 7 and 14 days after UUO or sham operation under anesthesia. Fractional proximal tubular mass, cell proliferation, and cell death were measured by morphometry. Superoxide formation was identified by nitro blue tetrazolium, and oxidant injury was localized by 4-hydroxynonenol and 8-hydroxydeoxyguanosine. Fractional areas of renal vasculature, interstitial collagen, α-smooth muscle actin, and fibronectin were also measured. After 14 days of UUO, the obstructed kidney loses 19% of parenchymal mass, with a 65% reduction in proximal tubular mass. Superoxide formation is localized to proximal tubules, which undergo oxidant injury, apoptosis, necrosis, and autophagy, with widespread mitochondrial loss, resulting in tubular collapse. In contrast, mitosis and apoptosis increase in dilated collecting ducts, which remain patent through epithelial cell remodeling. Relative vascular volume fraction does not change, and interstitial matrix components do not exceed 15% of total volume fraction of the obstructed kidney. These unique proximal and distal nephron cellular responses reflect differential "fight-or-flight" responses to obstructive injury and provide earlier indexes of renal injury than do interstitial compartment responses. Therapies to prevent or retard progression of renal disease should include targeting proximal tubule injury as well as interstitial fibrosis.  相似文献   

17.
Summary Cytochemical localization of particulate guanylate cyclase (GC) in rat kidney, after stimulation with atrial natriuretic factor (ANF), was studied by electron microscopy. In the renal corpuscle GC reaction product was localized on podocytes. Other segments of the nephron that showed ultracytochemical evidence of GC activity were the proximal convoluted tubule, the thick ascending limb of the loop of Henle and the collecting tubule. All GC positivity was associated with plasma membranes. Samples incubated in basal conditions (without ANF) did not reveal any GC reaction product. These results indicate that ANF is a strong activator of particulate GC. Our data also suggests that, through the enzyme, ANF acts directly on epithelial cells of tubules where Na+ reabsorption occurs. This is in agreement with the hypothesis that ANF has a direct tubular effect on natriuresis.  相似文献   

18.
In kidney nephron, parietal epithelial cells line the Bowman’s capsule and function as a permeability barrier for the glomerular filtrate. Bowman’s capsule cells with proximal tubule epithelial morphology have been found. However, the effects of tubular metaplasia in Bowman’s capsule on kidney function remain poorly understood. Sodium-glucose cotransporter 2 (SGLT2) plays a major role in reabsorption of glucose in the kidney and is expressed on brush border membrane (BBM) of epithelial cells in the early segment of the proximal tubule. We hypothesized that SGLT2 is expressed in tubularized Bowman’s capsule and used our novel antibody to test this hypothesis. Immunohistochemical analysis was performed with our SGLT2 antibody on C57BL/6 mouse kidney prone to have tubularized Bowman’s capsules. Cell membrane was examined with periodic acid-Schiff (PAS) stain. The results showed that SGLT2 was localized on BBM of the proximal tubules in young and adult mice. Bowman’s capsules were lined mostly with normal brush border-less parietal epithelial cells in young mice, while they were almost completely covered with proximal tubule-like cells in adult mice. Regardless of age, SGLT2 was expressed on BBM of the tubularized Bowman’s capsule but did not co-localize with nephrin in the glomerulus. SGLT2-expressing tubular cells expanded from the urinary pole toward the vascular pole of the Bowman’s capsule. This study identified the localization of SGLT2 in the Bowman’s capsule. Bowman’s capsules with tubular metaplasia may acquire roles in reabsorption of filtered glucose and sodium.  相似文献   

19.
A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8-1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 +/- 0.38 nl.min(-1).mm(-1) (n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.  相似文献   

20.
Structure of the kidney in the crab-eating frog, Rana cancrivora   总被引:1,自引:0,他引:1  
The structure of the nephron in the ranid frog, Rana cancrivora, was studied by light and electron microscopy. This frog is the only amphibian species to live in mangrove swamps of very high salinity. The nephron consists of the following parts: renal corpuscle, ciliated neck segment, proximal tubule, ciliated intermediate segment, distal tubule, connecting tubule, and collecting duct. The distal tubule is located in the ventromedial region of the kidney, and the other tubules are situated in the dorsolateral region. Renal corpuscles are found between the two regions. Some renal corpuscles have a wide Bowman's space because of the small glomerulus within them. The proximal tubules are composed of columnar cells with a dense luminal brush border of long microvilli and numerous apical vesicles and vacuoles. The initial part of the distal tubule consists of heavily interdigitated cells, characterized by a very regular palisade arrangement of mitochondria. In the terminal part of the distal tubule, shorter mitochondria of the infolding cells are situated irregularly around the nucleus. The connecting tubule consists of principal cells and canaliculus cells. The collecting duct consists of columnar or cuboidal cells; cytoplasmic organelles are relatively sparse. The canaliculus cells are intercalated between principal cells from the terminal distal tubule to the proximal part of the collecting duct. Our findings indicate that the kidney of R. cancrivora is structurally similar to kidneys of other amphibians. These findings are discussed with regard to probable correlations between ultrastructure and function in R. cancrivora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号