首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Missense mutations in the cardiac thin filament protein troponin T (TnT) are a cause of familial hypertrophic cardiomyopathy (FHC). To understand how these mutations produce dysfunction, five TnTs were produced and purified containing FHC mutations found in several regions of TnT. Functional defects were diverse. Mutations F110I, E244D, and COOH-terminal truncation weakened the affinity of troponin for the thin filament. Mutation DeltaE160 resulted in thin filaments with increased calcium affinity at the regulatory site of troponin C. Mutations R92Q and F110I resulted in impaired troponin solubility, suggesting abnormal protein folding. Depending upon the mutation, the in vitro unloaded actin-myosin sliding speed showed small increases, showed small decreases, or was unchanged. COOH-terminal truncation mutation resulted in a decreased thin filament-myosin subfragment 1 MgATPase rate. The results indicate that the mutations cause diverse immediate effects, despite similarities in disease manifestations. Separable but repeatedly observed abnormalities resulting from FHC TnT mutations include increased unloaded sliding speed, increased or decreased Ca(2+) affinity, impairment of folding or sarcomeric integrity, and decreased force. Enhancement as well as impairment of contractile protein function is observed, suggesting that TnT, including the troponin tail region, modulates the regulation of cardiac contraction.  相似文献   

2.
To understand the molecular function of troponin T (TnT) in the Ca(2+) regulation of muscle contraction as well as the molecular pathogenesis of familial hypertrophic cardiomyopathy (FHC), eight FHC-linked TnT mutations, which are located in different functional regions of human cardiac TnT (HCTnT), were produced, and their structural and functional properties were examined. Circular dichroism spectroscopy demonstrated different secondary structures of these TnT mutants. Each of the recombinant HCTnTs was incorporated into porcine skinned fibers along with human cardiac troponin I (HCTnI) and troponin C (HCTnC), and the Ca(2+) dependent isometric force development of these troponin-replaced fibers was determined at pH 7.0 and 6.5. All eight mutants altered the contractile properties of skinned cardiac fibers. E244D potentiated the maximum force development without changing Ca(2+) sensitivity. In contrast, the other seven mutants increased the Ca(2+) sensitivity of force development but not the maximal force. R92L, R92W, and R94L also decreased the change in Ca(2+) sensitivity of force development observed on lowering the pH from 7 to 6.5, when compared with wild type TnT. The examination of additional mutants, H91Q and a double mutant H91Q/R92W, suggests that mutations in a region including residues 91-94 in HCTnT can perturb the proper response of cardiac contraction to changes in pH. These results suggest that different regions of TnT may contribute to the pathogenesis of TnT-linked FHC through different mechanisms.  相似文献   

3.
Although it is established that familial hypertrophic cardiomyopathy (FHC) is caused by mutations in several sarcomeric proteins, including cardiac troponin T (TnT), its pathogenesis is still not completely understood. Previously, we established a transgenic rat model of FHC expressing a human TnT molecule with a truncation mutation (DEL-TnT). This study investigated whether contractile dysfunction and electrical vulnerability observed in DEL-TnT rats might be due to alterations of intracellular Ca(2+) homeostasis, myofibrillar Ca(2+) sensitivity, and/or myofibrillar ATP utilization. Simultaneous measurements of the force of contraction and intracellular Ca(2+) transients were performed in right ventricular trabeculae of DEL-TnT hearts at 0.25 and 1.0 Hz. Rats expressing wild-type human TnT as well as nontransgenic rats served as controls. In addition, calcium-dependent ATPase activity and tension development were investigated in skinned cardiac muscle fibers. Force of contraction was significantly decreased in DEL-TnT compared with nontransgenic rats and TnT. Time parameters of Ca(2+) transients were unchanged at 0.25 Hz but prolonged at 1.0 Hz in DEL-TnT. The amplitude of the fura-2 transient was similar in all groups investigated, whereas diastolic and systolic fura-2 ratios were found elevated in rats expressing nontruncated human troponin T. In DEL-TnT rats, myofibrillar Ca(2+)-dependent tension development as well as Ca(2+) sensitivity of tension were significantly decreased, whereas tension-dependent ATP consumption ("tension cost") was markedly increased. Thus, a C-terminal truncation of the cardiac TnT molecule impairs the force-generating capacity of the cycling cross-bridges resulting in increased tension-dependent ATP utilization. Taken together, our data support the hypothesis of energy compromise as a contributing factor in the pathogenesis of FHC.  相似文献   

4.
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.  相似文献   

5.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

6.
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. Inherited DCM can result from mutations in the genes encoding cardiac troponin T, troponin C, and alpha-tropomyosin; different mutations in the same genes cause hypertrophic cardiomyopathy. To understand how certain mutations lead specifically to DCM, we have investigated their effect on contractile function by comparing wild-type and mutant recombinant proteins. Because initial studies on two troponin T mutations have generated conflicting findings, we analyzed all eight published DCM mutations in troponin T, troponin C, and alpha-tropomyosin in a range of in vitro assays. Thin filaments, reconstituted with a 1:1 ratio of mutant/wild-type proteins (the likely in vivo ratio), all showed reduced Ca(2+) sensitivity of activation in ATPase and motility assays, and except for one alpha-tropomyosin mutant showed lower maximum Ca(2+) activation. Incorporation of either of two troponin T mutants in skinned cardiac trabeculae also decreased Ca(2+) sensitivity of force generation. Structure/function considerations imply that the diverse thin filament DCM mutations affect different aspects of regulatory function yet change contractility in a consistent manner. The DCM mutations depress myofibrillar function, an effect fundamentally opposite to that of hypertrophic cardiomyopathy-causing thin filament mutations, suggesting that decreased contractility may trigger pathways that ultimately lead to the clinical phenotype.  相似文献   

7.
The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development.  相似文献   

8.
Familial hypertrophic cardiomyopathy (FHC) is one of the most common genetic causes of heart disease. Approximately 15% of FHC-related mutations are found in cTnT [cardiac troponin (cTn) T]. Most of the cTnT FHC-related mutations are in or flanking the N-tail TNT1 domain that directly interacts with overlapping tropomyosin (Tm). We investigate two sets of cTnT mutations at opposite ends of TNT1, mutations in residue 92 in the Tm-Tm overlap region of TNT1 and mutations in residues 160 and 163 in the C-terminal portion of TNT1 adjacent to the cTnT H1-H2 linker. Though all the mutations are located within TNT1, they have widely different phenotypes clinically and biophysically. Using a complete atomistic model of the cTn-Tm complex, we identify mechanisms by which the effects of TNT1 mutations propagate to the cTn core and site II of cTnC, where calcium binding and dissociation occurs. We find that mutations in TNT1 alter the flexibility of TNT1, which is inversely proportional to the cooperativity of calcium activation of the thin filament. Further, we identify a pathway of propagation of structural and dynamic changes from TNT1 to site II of cTnC, including TNT1, cTnT linker, I-T arm, regulatory domain of cTnI, the D-E linker of cTnC, and site II cTnC. Mutationally induced changes at site II of cTnC alter calcium coordination that corresponds to biophysical measurements of calcium sensitivity. Finally, we compare this pathway of mutational propagation with that of the calcium activation of the thin filament and find that they are identical but opposite in direction.  相似文献   

9.
How different mutations in cardiac troponin T (cTnT) lead to distinct secondary downstream cellular remodeling in familial hypertrophic cardiomyopathy (FHC) remains elusive. To explore the molecular basis for the distinct impact of different mutations in cTnT on cardiac myocytes, we studied mechanical activity of detergent-skinned muscle fiber bundles from different lines of transgenic (TG) mouse hearts that express wild-type cTnT (WTTG), R92W cTnT, R92L cTnT, and Delta-160 cTnT (deletion of amino acid 160). The amount of mutant cTnT is approximately 50% of the total myocellular cTnT in both R92W and R92L TG mouse hearts and approximately 35% in Delta-160 TG mouse hearts. Myofilament Ca2+ sensitivity was enhanced in all mutant cTnT TG cardiac muscle fibers. Compared with the WTTG fibers, Ca2+ sensitivity increased significantly at short sarcomere length (SL) of 1.9 microm (P < 0.001) in R92W TG fibers by 2.2-fold, in R92L by 2.0-fold, and in Delta-160 by 1.3-fold. At long SL of 2.3 microm, Ca2+ sensitivity increased significantly (P < 0.01) in a similar manner (R92W, 2.5-fold; R92L, 1.9-fold; Delta-160, 1.3-fold). Ca2+-activated maximal tension remained unaltered in all TG muscle fibers. However, tension-dependent ATP consumption increased significantly in Delta-160 TG muscle fibers at both short SL (23%, P < 0.005) and long SL (37%, P < 0.0001), suggesting a mutation-induced change in cross-bridge detachment rate constant. Chronic stresses on relative cellular ATP level in cardiac myocytes may cause a strain on energy-dependent Ca2+ homeostatic mechanisms. This may result in pathological remodeling that we observed in Delta-160 TG cardiac myocytes where the ratio of sarco(endo)plasmic reticulum Ca2+-ATPase 2/phospholamban decreased significantly. Our results suggest that different types of stresses imposed on cardiac myocytes would trigger distinct cellular signaling, which leads to remodeling that may be unique to some mutants.  相似文献   

10.
The ends of striated muscle tropomyosin (TM) are integral for thin filament cooperativity, determining the cooperative unit size and regulating the affinity of TM for actin. We hypothesized that altering the alpha-TM carboxy terminal overlap end to the beta-TM counterpart would affect the amino-terminal association, which would alter the end-to-end interactions of TM molecules in the thin filament regulatory strand and affect the mechanisms of cardiac muscle contraction. To test this hypothesis, we generated transgenic (TG) mouse lines that express a mutant form of alpha-TM in which the first 275 residues are from alpha-TM and the last nine amino acids are from beta-TM (alpha-TM9aaDeltabeta). Molecular analyses show that endogenous alpha-TM mRNA and protein are nearly completely replaced with alpha-TM9aaDeltabeta. Working heart preparations data show that the rates of contraction and relaxation are reduced in alpha-TM9aaDeltabeta hearts. Left ventricular pressure and time to peak pressure are also reduced (-12% and -13%, respectively). The ratio of maximum to minimum first derivatives of change in left ventricular systolic pressure with respect to time (ratio of +dP/dt to -dP/dt, respectively) is increased, but tau is not changed significantly. Force-intracellular calcium concentration ([Ca2+]i) measurements from intact papillary fibers demonstrate that alpha-TM9aaDeltabeta TG fibers produce less force per given [Ca2+]i compared with nontransgenic fibers. Taken together, the data demonstrate that the rate of contraction is primarily affected in TM TG hearts. Protein docking studies show that in the mutant molecule, the overall carbon backbone is perturbed about 1.5 A, indicating that end-to-end interactions are altered. These results demonstrate that the localized flexibility present in the coiled-coil structures of TM isoforms is different, and that plays an important role in interacting with neighboring thin filament regulatory proteins and with differentially modulating the myofilament activation processes.  相似文献   

11.
The contractile response of the heart can be altered by disease-related protein modifications to numerous contractile proteins. By utilizing an IAANS labeled fluorescent troponin C, [Formula: see text], we examined the effects of ten disease-related troponin modifications on the Ca(2+) binding properties of the troponin complex and the reconstituted thin filament. The selected modifications are associated with a broad range of cardiac diseases: three subtypes of familial cardiomyopathies (dilated, hypertrophic and restrictive) and ischemia-reperfusion injury. Consistent with previous studies, the majority of the protein modifications had no effect on the Ca(2+) binding properties of the isolated troponin complex. However, when incorporated into the thin filament, dilated cardiomyopathy mutations desensitized (up to 3.3-fold), while hypertrophic and restrictive cardiomyopathy mutations, and ischemia-induced truncation of troponin I, sensitized the thin filament to Ca(2+) (up to 6.3-fold). Kinetically, the dilated cardiomyopathy mutations increased the rate of Ca(2+) dissociation from the thin filament (up to 2.5-fold), while the hypertrophic and restrictive cardiomyopathy mutations, and the ischemia-induced truncation of troponin I decreased the rate (up to 2-fold). The protein modifications also increased (up to 5.4-fold) or decreased (up to 2.5-fold) the apparent rate of Ca(2+) association to the thin filament. Thus, the disease-related protein modifications alter Ca(2+) binding by influencing both the association and dissociation rates of thin filament Ca(2+) exchange. These alterations in Ca(2+) exchange kinetics influenced the response of the thin filament to artificial Ca(2+) transients generated in a stopped-flow apparatus. Troponin C may act as a hub, sensing physiological and pathological stimuli to modulate the Ca(2+)-binding properties of the thin filament and influence the contractile performance of the heart.  相似文献   

12.
Modular control analysis (MoCA; Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E, Arsac L, Franconi JM. Am J Physiol Regul Integr Comp Physiol 293: R13-R19, 2007) was applied here on perfused hearts to describe the modifications of the regulation of heart energetics induced in mice exposed to 3-wk chronic hypoxia. MoCA combines 31P-NMR spectroscopy and modular (top down) control analysis to describe the integrative regulation of energy metabolism in the intact beating heart, on the basis of two modules [ATP/phosphocreatine (PCr) production and ATP/PCr consumption] connected by the energetic intermediates. In contrast with previous results in rat heart, in which all control of contraction was on ATP demand, mouse heart energetics presented a shared control of contraction between ATP/PCr-producing and -consuming modules. In chronic hypoxic mice, the decrease in heart contractile activity and PCr-to-ATP ratio was surprisingly associated with an important and significant higher response of ATP/PCr production (elasticity) to PCr changes compared with control hearts (-10.4 vs. -2.46). By contrast, no changes were observed in ATP/PCr consumption since comparable elasticities were observed. Since elasticities determine the regulation of energetics of heart contraction, the present results show that this new parameter may be used to uncover the origin of the observed dysfunctions under chronic hypoxia conditions. Considering the decrease in mitochondrial content reported after exposure to chronic hypoxia, it appears that the improvement of ATP/PCr production response to ATP demand may be viewed as a positive adaptative mechanism. It now appears crucial to understand the very processes responsible for ATP/PCr producer elasticity toward the energetic intermediates, as well as their regulation.  相似文献   

13.
To study the effect of troponin (Tn) T mutations that cause familial hypertrophic cardiomyopathy (FHC) on cardiac muscle contraction, wild-type, and the following recombinant human cardiac TnT mutants were cloned and expressed: I79N, R92Q, F110I, E163K, R278C, and intron 16(G(1) --> A) (In16). These TnT FHC mutants were reconstituted into skinned cardiac muscle preparations and characterized for their effect on maximal steady state force activation, inhibition, and the Ca(2+) sensitivity of force development. Troponin complexes containing these mutants were tested for their ability to regulate actin-tropomyosin(Tm)-activated myosin-ATPase activity. TnT(R278C) and TnT(F110I) reconstituted preparations demonstrated dramatically increased Ca(2+) sensitivity of force development, while those with TnT(R92Q) and TnT(I79N) showed a moderate increase. The deletion mutant, TnT(In16), significantly decreased both the activation and the inhibition of force, and substantially decreased the activation and the inhibition of actin-Tm-activated myosin-ATPase activity. ATPase activation was also impaired by TnT(F110I), while its inhibition was reduced by TnT(R278C). The TnT(E163K) mutation had the smallest effect on the Ca(2+) sensitivity of force; however, it produced an elevated activation of the ATPase activity in reconstituted thin filaments. These observed changes in the Ca(2+) regulation of force development caused by these mutations would likely cause altered contractility and contribute to the development of FHC.  相似文献   

14.
During myofibrillogenesis, many muscle structural proteins assemble to form the highly ordered contractile sarcomere. Mutations in these proteins can lead to dysfunctional muscle and various myopathies. We have analyzed the Drosophila melanogaster troponin T (TnT) up1 mutant that specifically affects the indirect flight muscles (IFM) to explore troponin function during myofibrillogenesis. The up1 muscles lack normal sarcomeres and contain "zebra bodies," a phenotypic feature of human nemaline myopathies. We show that the up(1) mutation causes defective splicing of a newly identified alternative TnT exon (10a) that encodes part of the TnT C terminus. This exon is used to generate a TnT isoform specific to the IFM and jump muscles, which during IFM development replaces the exon 10b isoform. Functional differences between the 10a and 10b TnT isoforms may be due to different potential phosphorylation sites, none of which correspond to known phosphorylation sites in human cardiac TnT. The absence of TnT mRNA in up1 IFM reduces mRNA levels of an IFM-specific troponin I (TnI) isoform, but not actin, tropomyosin, or troponin C, suggesting a mechanism controlling expression of TnT and TnI genes may exist that must be examined in the context of human myopathies caused by mutations of these thin filament proteins.  相似文献   

15.
Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo 31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity.  相似文献   

16.
Cardiac muscle contraction depends on the tightly regulated interactions of thin and thick filament proteins of the contractile apparatus. Mutations of thin filament proteins (actin, tropomyosin, and troponin), causing familial hypertrophic cardiomyopathy (FHC), occur predominantly in evolutionarily conserved regions and induce various functional defects that impair the normal contractile mechanism. Dysfunctional properties observed with the FHC mutants include altered Ca(2+) sensitivity, changes in ATPase activity, changes in the force and velocity of contraction, and destabilization of the contractile complex. One apparent tendency observed in these thin filament mutations is an increase in the Ca(2+) sensitivity of force development. This trend in Ca(2+) sensitivity is probably induced by altering the cross-bridge kinetics and the Ca(2+) affinity of troponin C. These in vitro defects lead to a wide variety of in vivo cardiac abnormalities and phenotypes, some more severe than others and some resulting in sudden cardiac death.  相似文献   

17.
Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding.  相似文献   

18.
The cardiac parameters of two rat strains [Wistar (W) and Sprague Dawley (SD)] were compared during Langendorff perfusion. The values of coronary flow, heart rate, amplitude of contraction and the incidence of arrhythmias were studied during three 10 minutes periods: perfusion, ischemia by coronary artery occlusion and reperfusion. The values of heart rate and coronary flow of SD hearts are always higher than those of W hearts whatever the potassium (K+) concentration of perfusate (5.9 or 3 mM). Furthermore, with a high K+ perfusate (5.9 mM) and during ischemia. W rat hearts showed ventricular tachycardia periods which are never observed in SD rat hearts. It is concluded that W rat hearts present a higher sensitivity to the development of dysfunction than SD rat hearts.  相似文献   

19.
Several mutationsin human cardiac troponin T (TnT) gene have been reported to causehypertrophic cardiomyopathy (HCM). To explore the effects of themutations on cardiac muscle contractile function under physiologicalconditions, human cardiac TnT mutants, Ile79Asn and Arg92Gln, as wellas wild type, were expressed in Escherichiacoli and exchanged into permeabilized rabbit cardiac muscle fibers, and Ca2+-activatedforce was determined. The freeCa2+ concentrations required fortension generation were found to be significantly lower in the mutantTnT-exchanged fibers than in the wild-type TnT-exchanged fibers,whereas no significant differences were found in tension-generatingcapability under maximal activating conditions and in cooperativity.These results suggest that a heightenedCa2+ sensitivity of cardiac musclecontraction is one of the factors to cause HCM associated with theseTnT mutations.

  相似文献   

20.
We investigated whether an alteration of myofilament calcium responsiveness and contractile activation may in part contribute to heart failure. A control group of Broad Breasted White turkey poults was given regular feed without additive, whereas the experimental group was given the control ration with 700 ppm of furazolidone at 1 week of age for 3 weeks (DCM). At 4 weeks of age, left ventricular trabeculae carneae were isolated from hearts and calcium-force relationships studied. No differences in calcium-activation between fibers from control or failing hearts were noted under standard experimental conditions. Also failing hearts demonstrated no significant shift in the population of troponin T isoforms but we did observe a significant 4-fold decrease in TnT content in failing hearts compared to non-failing hearts. Addition of caffeine, however, resulted in a greater leftward shift on the calcium axis in fibers from failing hearts. At pCa 6, caffeine increased force by 26+/-2.1% in control fibers and 44.5+/-8.7% in myopathic fibers. Cyclic AMP resulted in a greater rightward shift on the calcium axis in failing myocardium. In control muscles, the frequency of minimum stiffness (f(min)) was higher than in muscles from failing hearts. cAMP and caffeine both shifted f(min) to higher frequencies in control fibers whereas in fibers from failing hearts both caused a greater shift. These results lead us to conclude that heart failure exerts differential effects on cAMP and caffeine responsiveness. Our data suggest that changes at the level of the thin myofilaments may alter myofilament calcium responsiveness and contribute to the contractile dysfunction seen in heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号