首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The denV gene from bacteriophage T4, which codes for endonuclease V, a small DNA repair enzyme, has been cloned and identified by an approach combining DNA sequencing and genetics, independent of the phenotypic effect of the cloned gene. Appropriate DenV+ and DenV- deletion mutants were mapped physically to define precisely a region encompassing the denV gene. This region was sequenced in order to identify a protein-coding sequence of the correct size for the denV gene (400-500 bp). Finally, identification was confirmed by sequencing the corresponding fragments cloned from four genetically and phenotypically well-characterized denV mutants. The denV gene is located at 64 kb on the T4 genome, adjacent to the ipII gene, and codes for a basic protein of 138 amino acids with a deduced molecular weight of 16,078.  相似文献   

2.
Phage T4 deletion mutants that are folate analog resistant (far) and contain deletions in the region of the T4 genome near denV have been isolated previously. We showed that one of these mutants (T4farP12) expressed normal denV gene activity, whereas another mutant (T4farP13) was defective in the denV gene. The rII-distal (right) physical endpoints of these deletions defined the limits of the interval in which the rII-proximal (left) endpoint of the denV gene should be located. The deletion endpoints were identified by restriction and Southern hybridization analyses of phage derivatives containing deoxycytidine instead of hydroxymethyldeoxycytidine in their DNAs. The results of these analyses localized the rII-proximal (left) end of the denV gene to a region between 62.4 and 64.3 kilobases on the T4 physical map. denV+ phage resulted from marker rescue with two of five denV- alleles tested, using plasmids containing a 1.8-kilobase fragment from this region or a 179-base-pair terminal fragment derived from it. Sequencing of the 179-base-pair fragment from wild-type DNA showed a 130-base-pair open reading frame with its termination codon at the rII-proximal end. Confirmation that this open reading frame is part of the denV coding sequence was obtained by identifying a TAG amber codon in the homologous DNA derived from a denV amber mutant strain. This mutant strain rescued the denV+ allele from plasmids containing the wild-type sequence. An adjacent overlapping restriction fragment was also cloned, permitting determination of the remaining denV gene sequence. Based on these results, the 3' end of the coding region of the denV locus was mapped to kilobase position 64.07 on the T4 physical map, and the 5' end was mapped to position 64.48.  相似文献   

3.
The heritable DNA repair defect in human Xeroderma D cells, which results in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for the dominant marker plus resistance to killing by u.v. light, have been shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation have been correlated both with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most of the transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. These results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell.  相似文献   

4.
A plasmid containing the denV gene from bacteriophage T4, under the control of the yeast alcohol dehydrogenase I (ADC1) promoter, conferred a substantial increase in UV resistance in the UV-sensitive Saccharomyces cerevisiae mutants rad1-2 and rad3-2. The UV resistance of the denV+ yeast cells was cell cycle dependent and correlated well with the level of the denV gene product as measured by immunoblotting and by a photoreversal assay for pyrimidine dimer-DNA glycosylase activity.  相似文献   

5.
D G Stump  R S Lloyd 《Biochemistry》1988,27(6):1839-1843
T4 endonuclease V incises DNA at the sites of pyrimidine dimers through a two-step mechanism. These breakage reactions are preceded by the scanning of nontarget DNA and binding to pyrimidine dimers. In analogy to the synthetic tripeptides Lys-Trp-Lys and Lys-Tyr-Lys, which have been shown to be capable of producing single-strand scissions in DNA containing apurinic sites, endonuclease V has the amino acid sequence Trp-Tyr-Lys-Tyr-Tyr (128-132). Site-directed mutagenesis of the endonuclease V gene, denV, was performed at the Tyr-129 and at the Tyr-129 and Tyr-131 positions in order to convert the Tyr residues to nonaromatic amino acids to test their role in dimer-specific binding. The UV survival of repair-deficient (uvrA recA) Escherichia coli cells harboring the denV N-129 construction was dramatically reduced relative to wild-type denV+ cells. The survival of denV N-129,131 cells was indistinguishable from that of the parental strain lacking the denV gene. The mutant endonuclease V proteins were then characterized with regard to (1) dimer-specific nicking activity, (2) apurinic nicking activity, and (3) binding affinity to UV-irradiated DNA. Dimer-specific nicking activity and dimer-specific binding for both denV N-129 and N-129,131 were abolished, while apurinic-specific nicking was substantially retained in denV N-129,131 but was abolished in denV N-129. These results indicate that Tyr-129 and Tyr-131 positions of endonuclease V are at least important in pyrimidine dimer-specific binding and possibly nicking activity.  相似文献   

6.
Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.  相似文献   

7.
The bacteriophage T4 denV gene encodes a well-characterized DNA repair enzyme involved in pyrimidine photodimer excision. We have discovered the first homologs of the denV gene in chlorella viruses, which are common in fresh water. This gene functions in vivo and also when cloned in Escherichia coli. Photodamaged virus DNA can also be photoreactivated by the host chlorella. Since the chlorella viruses are continually exposed to solar radiation in their native environments, two separate DNA repair systems, one that functions in the dark and one that functions in the light, significantly enhance their survival.  相似文献   

8.
Deinococcus radiodurans has 2 endonucleases that incise UV-irradiated DNA. UV endonuclease-alpha and UV endonuclease-beta, that are believed to functionally overlap. Both endonucleases must be mutationally inactivated to yield an incisionless, markedly UV-sensitive phenotype. denV, the bacteriophage T4 gene encoding pyrimidine dimer-DNA glycosylase (PD-glycosylase), was introduced and expressed via duplication insertion in D. radiodurans wild-type, and single and double UV endonuclease mutants. The strain deficient in UV endonuclease-alpha has wild-type UV resistance, and the expression of PD-glycosylase exerted no survival effect on this strain or wild-type. Expression of denV increased survival of both the markedly UV-sensitive double mutant and the moderately UV-sensitive strain deficient only in UV endonuclease-beta. In endonuclease-beta-deficient cells phenotypic complementation by denV was almost complete in restoring UV resistance to wild-type levels. These results suggest that UV endonuclease-alpha (which is present in the endonuclease-beta-deficient cells) does not recognize one or more types of cyclobutane dimer incised by the PD-glycosylase or UV endonuclease-beta.  相似文献   

9.
We demonstrate the feasibility of using passive host-cell reactivation of a shuttle-vector pRSVcat to detect cloned DNA-repair genes. As models, a transient expression vector, pRSVdenV, and a positive-selection vector, pRSVdenV/SVgpt, were constructed containing the T4 coliphage denV gene, coding for an ultraviolet-specific endonuclease, under promotion of the Rous sarcoma virus (RSV) long-terminal repeat. Cotransfection of one or three copies of pRSVdenV per UV-irradiated pRSVcat molecule into xeroderma pigmentosum (XP) cells (XP12Ro[M1]) resulted in a dramatic increase in transient expression of chloramphenicol acetyl transferase (CAT) activity. XP clones stable transformed by pRSVdenV/SVgpt but not the parent cell line rescued CAT activity from this UV-irradiated reporter gene. The ability to express CAT activity from a UV-irradiated pRSVcat correlated with the presence of the structural denV gene as detected by Southern blot analysis. Post-UV irradiation colony-forming ability and DNA nucleotide excision-repair synthesis were partially restored in XP clones which rescued CAT activity. These results demonstrate the feasibility of using the cloned denV gene with its well characterized pyrimidine cyclobutane dimer-specific endonuclease activity to reconstitute UV-induced DNA repair in human cells deficient in DNA repair. Measuring CAT expression from pRSVcat affords a rapid, sensitive procedure to screen for functional cloned DNA-repair genes and to test mutant cells for defects in DNA repair.  相似文献   

10.
Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130   总被引:3,自引:0,他引:3  
A Recinos  R S Lloyd 《Biochemistry》1988,27(6):1832-1838
The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

12.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

13.
An approach to the detection of pyrimidine dimer-DNA glycosylase activity in living cells is presented. Mutants of Escherichia coli defective in uvr functions required for incision of UV-irradiated DNA were infected with phage T4 denV+ or denV- (defective in the T4 pyrimidine dimer-DNA glycosylase activity). In the former case the denV gene product catalyzed the incision of UV-irradiated host DNA, facilitating the subsequent excision of thymine-containing pyrimidine dimers. Isolation of these dimers from the acid-soluble fraction of infected cells was achieved by a multistep thin-layer chromatographic system. Exposure of the dimers to irradiation that monomerizes pyrimidine dimers (direct photoreversal) resulted in the stoichiometric formation of free thymine. Thus, in vivo incision of UV-irradiated DNA dependent on a pyrimidine dimer-DNA glycosylase can be demonstrated.  相似文献   

14.
The role of exonuclease III and endonuclease IV in the repair of pyrimidine dimers in bacteriophage T4-infected Escherichia coli was examined. UV-irradiated T4 showed reduced survival when plated on an xth nfo double mutant but showed wild-type survival on either single mutant. T4 denV phage were equally sensitive when plated on wild-type E. coli or an xth nfo double mutant, suggesting that these endonucleases function in the same repair pathway as T4 pyrimidine dimer-DNA glycosylase. A uvrA mutant of E. coli in which the repair of pyrimidine dimers was dependent on the T4 denV gene carried on a plasmid was constructed. Neither an xth nor an nfo derivative of this strain was more sensitive than the parental strain to UV irradiation. We were unable to construct a uvrA xth nfo triple mutant. In addition, T4, which turns off the host UvrABC excision nuclease, showed reduced plating efficiency on an xth nfo double mutant.  相似文献   

15.
T4 DNA structural requirements for encapsidation in vivo were investigated, using thin-section electron microscopy to quantitate the kinetics and yields of head intermediates after synchronous DNA packaging into accumulated processed proheads. UV irradiation (254 nm) of T4-infected bacteria just before initiation of encapsidation resulted in a reduction in the rate of DNA packaged measured by electron microscopy and in the yield of viable phage progeny. In UV-irradiated infections with excision-deficient mutants (denV-), the extent of packaging decline was proportional to the UV dose and phage yields were lower than expected based on the packaging levels observed by microscopy. Rescue analysis of progeny from such infections revealed elevated levels of nonviable virions. Pyrimidine dimers were encapsidated in denV- infections, but in excision-competent infections (denV+) dimers were not packaged. A UV-independent, 15 to 20% packaging arrest was also observed when denV endonuclease was inactive during encapsidation, indicating a denV requirement to achieve normal T4 packaging levels. Pyrimidine dimers apparently represent or induce transient blockage of DNA encapsidation or both, causing a decline in the rate. This is in contrast to other DNA structural blocks to packaging induced by mutations in T4 genes 30 and 49, which appear to arrest the process.  相似文献   

16.
Photodynamic inactivation of bacteriophage T4 particles, mediated by either angelicin or thiopyronin, is enhanced by defects in the T4 uvsW-uvsX-uvsY postreplication repair system but not by a defect in the denV pyrimidine-dimer-excision system. There was no evidence for functional interactions between the two repair systems. As observed previously with 8-methoxypsoralen, photodynamic mutagenesis with angelicin is abolished by defects in the uvsW-uvsX-uvsY system.  相似文献   

17.
The complete 7.2-kb nucleotide sequence from the 58.3 to 65.5-kb early region of bacteriophage T4 has been determined by Maxam and Gilbert sequencing. Computer analysis revealed at least 20 open reading frames (ORFs) within this sequence. All major ORFs are transcribed from the left strand, suggesting that they are expressed early during infection. Among the ORFs, we have identified the ipIII, ipII, denV and tk genes. The ORFs are very tightly spaced, even overlapping in some instances, and when ORF interspacing occurs, promoter-like sequences can be implicated. Several of the sequences preceding the ORFs, in particular those at ipIII, ipII, denV, and orf61.9, can potentially form stable stem-loop structures.  相似文献   

18.
Excision repair and patch size in UV-irradiated bacteriophage T4.   总被引:3,自引:2,他引:1       下载免费PDF全文
We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.  相似文献   

19.
Purification of the T4 endonuclease V   总被引:1,自引:0,他引:1  
A new purification protocol has been developed for the rapid isolation to physical homogeneity of T4 endonuclease V. The enzyme was purified from an Escherichia coli strain which harbors a plasmid containing the T4 denV structural gene downstream of the lambda rightward promoter. The purification of the enzyme was monitored by pyrimidine dimer-specific nicking activity, Western blot analysis and silver or Coomassie Blue staining of SDS-polyacrylamide gels. Milligram quantities of the enzyme have been purified by the following procedure. After sonication of cells and removal of major cell debris, total protein and nucleic acids were passed over a single-stranded DNA agarose column. Endonuclease V was eluted at 650 mM KCl with a linear salt gradient yielding enzyme of approximately 20% purity and following dialysis, was applied to a chromatofocusing column. The enzyme elutes at pH 9.4 and is greater than 90% homogeneous at this step. The final purification step is CM-Sephadex chromatography which attains greater than 98% homogeneity.  相似文献   

20.
The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of a third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encodes the major T4 ssDNA-binding protein (the scaffolding of DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. We conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before or after DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号