首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F''S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.''S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout''s substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity.  相似文献   

2.
Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and also by large flows of current in either direction. This stage is temporary and the cells promptly recover from it. While it persists the polarization appears to be much greater to outward currents than to inward. This can largely be ascribed to the reduction of the reversed P.D. 5. Disappearance of P.D. caused by death, and various toxic agents. The resistance and polarization of the protoplasm are negligible. The back E.M.F. of polarization is shown to account largely for the apparent resistance of the protoplasm. Its calculation from the observed resistance rises gives values up to 150 mv. in the early stages of recovery, and later values of 50 to 75 mv. in the "constant" state. These are compared with the back E.M.F. similarly calculated from the apparent resistance of intact cells. The electrical capacitance of the protoplasm is shown by the time curves to be of the order of 1 microfarad per cm.2 of surface.  相似文献   

3.
The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l‐Glutamate oxidase (LGOX) from Streptomyces sp. X‐119‐6 catalyzes the oxidative deamination of l‐glutamate to produce 2‐ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l‐glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l‐glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l‐arginine. The oxidative deamination activity of LGOX to l‐arginine is higher than that of l‐arginine oxidase form from Pseudomonas sp. TPU 7192. X‐ray crystal structure analysis revealed that the guanidino group of l‐arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild‐type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l‐arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l‐arginine by LGOX R305E, is proportional to the concentration of l‐arginine in a range from 0 to 100 μM. The linear relationship is maintained around 1 μM of l‐arginine. Thus, LGOX R305E is suitable for the determination of l‐arginine.  相似文献   

4.
The effect of direct current flow upon the potential difference across the protoplasm of impaled Valonia cells was studied. Current density and direction were controlled in a bridge which balanced the ohmic resistances, leaving the changes (increase, decrease, or reversal) of the small, normally negative, bioelectric potential to be recorded continuously, before, during, and after current flow, with a string galvanometer connected into a vacuum tube detector circuit. Two chief states of response were distinguished: State A.—Regular polarization, which begins to build up the instant current starts to flow, the counter E.M.F. increasing most rapidly at that moment, then more and more slowly, and finally reaching a constant value within 1 second or less. The magnitude of counter E.M.F. is proportional to the current density with small currents flowing in either direction across the protoplasm, but falls off at higher density, giving a cusp with recession to lower values; this recession occurs with slightly lower currents outward than inward. Otherwise the curves are much the same for inward and outward currents, for different densities, for charge and discharge, and for successive current flows. There is a slight tendency for the bioelectric potential to become temporarily positive following these current flows. Records in the regular state (State A) show very little effect of increased series resistance on the time constant of counter E.M.F. This seems to indicate that a polarization rather than a static capacity is involved. State B.—Delayed and non-proportional polarization, in which there is no counter E.M.F. developed with small currents in either direction across the protoplasm, nor with very large outward currents. But with inward currents a threshold density is reached at which a counter E.M.F. rather suddenly develops, with a sigmoid curve rising to high positive values (200 mv. or more). There is sometimes a cusp, after which the P.D. remains strongly positive as long as the current flows. It falls off again to negative values on cessation of current flow, more rapidly after short flows, more slowly after longer ones. The curves of charge are usually quite different in shape from those of discharge. Successive current flows of threshold density in rapid succession produce quicker and quicker polarizations, the inflection of the curve often becoming smoothed away. After long interruptions, however, the sigmoid curve reappears. Larger inward currents produce relatively little additional positive P.D.; smaller ones on the other hand, if following soon after, have a greatly increased effectiveness, the threshold for polarization falling considerably. The effect dies away, however, with very small inward currents, even as they continue to flow. Over a medium range of densities, small increments or decrements of continuing inward current produce almost as regular polarizations as in State A. Temporary polarization occurs with outward currents following soon after the threshold inward currents, but the very flow of outward current tends to destroy this, and to decondition the protoplasm, again raising the threshold, for succeeding inward flows. State A is characteristic of a few freshly gathered cells and of most of those which have recovered from injuries of collecting, cleaning, and separating. It persists a short time after such cells are impaled, but usually changes over to State B for a considerable period thereafter. Eventually there is a reappearance of regular polarization; in the transition there is a marked tendency for positive P.D. to be produced after current flow, and during this the polarizations to outward currents may become much larger than those to inward currents. In this it resembles the effects of acidified sea water, and of certain phenolic compounds, e.g. p-cresol, which produce State A in cells previously in State B. Ammonia on the other hand counteracts these effects, producing delayed polarization to an exaggerated extent. Large polarizations persist when the cells are exposed to potassium-rich solutions, showing it is not the motion of potassium ions (e.g. from the sap) which accounts for the loss or restoration of polarization. It is suggested that inward currents restore a protoplasmic surface responsible for polarization by increasing acidity, while outward currents alter it by increasing alkalinity. Possibly this is by esterification or saponification respectively of a fatty film. For comparison, records of delayed polarization in silver-silver chloride electrodes are included.  相似文献   

5.
1. If the concentration of choline esterase is determined at different sections from the head to the caudal end of the electric organ of Electrophorus electricus (Linneaus) S-like curves are obtained. These curves are essentially the same as those which show the number of electric discs per centimeter and the E.M.F. per centimeter. 2. In the organ of Hunter the concentration of the enzyme does not differ from that in the adjacent parts in the main organ. This again coincides with the observations on the number of plates per centimeter in this organ. 3. The concentration of the enzyme was determined in different parts of the brain and the spinal cord and compared with that in a gold fish. The concentrations here are of the same order, but in the spinal cord of the eel the concentration is even lower than in the gold fish. As the cell bodies of the nerves innervating the electric organ in the spinal cord, these results do not lend support to the assumption of a special concentration of the enzyme in these nerves. 4. In the muscles adjacent to the electric organ an enzyme concentration has been found which is of the order of that in the electric tissue itself and much higher than in ordinary striated muscles. 5. The suitability of the organ for the preparation of enzyme solutions has been investigated and compared with that of the organ of Torpedo.  相似文献   

6.
1. It has been found that the ratios of the total concentrations of Ca, Mg, K, Zn, inside and outside of gelatin particles do not agree with the ratios calculated according to Donnan''s theory from the hydrogen ion activity ratios. 2. E.M.F. measurements of Zn and Cl electrode potentials in such a system show, however, that the ion activity ratios are correct, so that the discrepancy must be due to a decrease in the ion concentration by the formation of complex ions with the protein. 3. This has been confirmed in the case of Zn by Zn potential measurements in ZnCl2 solutions containing gelatin. It has been found that in 10 per cent gelatin containing 0.01 M ZnCl2 about 60 per cent of the Zn++ is combined with the gelatin. 4. If the activity ratios are correctly expressed by Donnan''s equation, then the amount of any ion combined with a protein can be determined without E.M.F. measurements by determining its distribution in a proper system. If the activity ratio of the hydrogen ion and the activity of the other ion in the aqueous solution are known, then the activity and hence the concentration of the ion in the protein solution can be calculated. The difference between this and the total molar concentration of the ion in the protein represents the amount combined with the protein. 5. It has been shown that in the case of Zn the values obtained in this way agree quite closely with those determined by direct E.M.F. measurements. 6. The combination with Zn is rapidly and completely reversible and hence is probably not a surface effect. 7. Since the protein combines more with Zn than with Cl, the addition of ZnCl2 to isoelectric gelatin should give rise to an unequal ion distribution and hence to an increase in swelling, osmotic pressure, and viscosity. This has been found to be the case.  相似文献   

7.
In the present study, we identified l-erythro-β-hydroxyasparagine (l-β-EHAsn) found abundantly in human urine, as a novel substrate of Zn2+-dependent d-serine dehydratase (DSD). l-β-EHAsn is an atypical amino acid present in large amounts in urine but rarely detected in serum or most organs/tissues examined. Quantitative analyses of urinary l-β-EHAsn in young healthy volunteers revealed significant correlation between urinary l-β-EHAsn concentration and creatinine level. Further, for in-depth analyses of l-β-EHAsn, we developed a simple three-step synthetic method using trans-epoxysuccinic acid as the starting substance. In addition, our research revealed a strong inhibitory effect of l-β-EHAsn on mammalian serine racemase, responsible for producing d-serine, a co-agonist of the N-methyl-d-aspartate (NMDA) receptor involved in glutamatergic neurotransmission.  相似文献   

8.
Guanidine applied to Nitella may lower the threshold of E.M.F. required to produce electrical stimulation and may give rise to trains of action currents. Its effect thus appears to be somewhat similar to that observed in animals. Rapid action currents are produced as well as "square topped" action curves and transitional forms. These effects may be due in part to increased protoplasmic conductivity produced by the penetration of guanidine.  相似文献   

9.
The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, ‘chair-like’ G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.  相似文献   

10.
The transfer numbers of the ions of electrolytes in the dried collodion membrane, as determined in a previous paper indirectly from the E.M.F. of concentration chains, can also be determined directly by electrical transfer experiments. It is shown that the difficulties involved in such experiments can be overcome. The transfer numbers obtained by the two methods are in satisfactory agreement. The experimental results obtained in the transfer experiments furnish an additional argument in favor of maintaining the theory that the electromotive effects observed in varying concentrations of different electrolytes with the dried collodion membrane may be referred to differences in the mobilities of the anions and cations within the membrane. As was shown by the method of the previous paper, the transfer number depends largely on concentration. There are some minor discrepancies between the values of the transfer numbers obtained by the two methods which, as yet, cannot be completely explained.  相似文献   

11.
1. When collodion particles suspended in water move in an electric field they are, as a rule, negatively charged. The maximal cataphoretic P.D. between collodion particles and water is about 70 millivolts. This is only slightly more than the cataphoretic P.D. found by McTaggart to exist between gas bubbles and water (55 millivolts). Since in the latter case the P.D. is entirely due to forces inherent in the water itself, resulting possibly in an excess of OH ions in the layer of water in contact and moving with the gas bubble, it is assumed that the negative charge of the collodion particles is also chiefly due to the same cause; the collodion particles being apparently only responsible for the slight difference in maximal P.D. of water-gas and water-collodion surfaces. 2. The cataphoretic charge of collodion particles seems to be a minimum in pure water, increasing as a rule with the addition of electrolytes, especially if the cation of the electrolyte is monovalent, until a maximal P.D. is reached. A further increase in the concentration of the electrolyte depresses the P.D. again. There is little difference in the action of HCl, NaOH, and NaCl or LiCl or KCl. 3. The increase in P.D. between collodion particles and water upon the addition of electrolyte is the more rapid the higher the valency of the anion. This suggests that this increase of negative charge of the collodion particle is due to the anions of the electrolyte gathering in excess in the layer of water nearest to the collodion particles, while the adjoining aqueous layer has an excess of cations. 4. In the case of chlorides and at a pH of about 5.0 the maximal P.D. between collodion particles and water is about 70 millivolts, when the cation of the electrolyte present is monovalent (H, Li, Na, K); when the cation of the electrolyte is bivalent (Mg, Ca), the maximal P.D. is about 35 to 40 millivolts; and when the cation is trivalent (La) the maximal P.D. is lower, probably little more than 20 millivolts. 5. A reversal in the sign of charge of the collodion particles could be brought about by LaCl3 but not by acid. 6. These results on the influence of electrolytes on the cataphoretic P.D. between collodion particles and water are also of significance for the theory of electrical endosmose and anomalous osmosis through collodion membranes; since the cataphoretic P.D. is probably identical with the P.D. between water and collodion inside the pores of a collodion membrane through which the water diffuses. 7. The cataphoretic P.D. between collodion particles and water determines the stability of suspensions of collodion particles in water, since rapid precipitation occurs when this P.D. falls below a critical value of about 16 millivolts, regardless of the nature of the electrolyte by which the P.D. is depressed. No peptization effect of plurivalent anions was noticed.  相似文献   

12.
Two types of stability are observed in suspensions of red blood cells. In weak concentrations of electrolytes the stability depends on the electric charge of the cells and suspension is unstable below a certain critical P.D. In strong concentrations of electrolyte, the stability bears no relation to the charge.  相似文献   

13.
In measurements of P.D. across the protoplasm in single cells, the presence of parallel circuits along the cell wall may cause serious difficulty. This is particularly the case with marine algae, such as Valonia, where the cell wall is imbibed with a highly conducting solution (sea water), and hence has low electrical resistance. In potential measurements on such material, it is undesirable to use methods in which the surface of the cell is brought in contact with more than one solution at a time. The effect of a second solution wetting a part of the cell surface is discussed, and demonstrated by experiment. From further measurements with improved technique, we find that the value previously reported for the P.D. of the chain Valonia sap | Valonia protoplasm | Valonia sap is too low, and also that the P.D. undergoes characteristic changes during experiments lasting several hours. The maximum P.D. observed is usually between 25 and 35 mv., but occasionally higher values (up to 82 mv.) are found. The appearance of the cells several days after the experiment, and the P.D.''s which they give with sea water, indicate that no permanent injury has been received as a result of exposure to artificial sap. If such cells are used in a second measurement with artificial sap, however, the form of the P.D.-time curve indicates that the cells have undergone an alteration which persists for a long time. On the basis of the theory of protoplasmic layers, an attempt has been made to explain the observed changes in P.D. with time, assuming that these changes are due to penetration of KCl into the main body of the protoplasm.  相似文献   

14.
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers.  相似文献   

15.
The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O2 in N2). When bubbling of 2 per cent O2 is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O2 causes the P.D. to drop to 20 mv. or less; 1.1 per cent O2 to about 50 mv. Restoration of 2 per cent or higher O2 causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O2 tension also inhibits the reversed, negative P.D. produced by adding NH4Cl to sea water, 0.2 per cent O2 bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O2 or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O2 may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O2. This indicates that the originally high relative mobility or concentration of K+ ion has approached that of Na+ in the external protoplasmic surface under reduced O2 tension. Results obtained with sulfate sea water indicate that Na+ mobility approaches that of SO4 in 0.2 per cent O2. P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of the faster ion. A decrease of all ionic permeability is indicated, however, by a greatly increased effective resistance to direct current during low O2. Low resistance is regained on aeration. The resistance increase resembles that produced by weak acids, cresol, etc. Acids or other substances produced in anaerobiosis may be responsible for the alteration. Or a deficiency of some surface constituent may develop. In addition to the surface changes there may be alterations in gradients of inorganic or organic ions within the protoplasm, but there is at present no evidence on this point. The surface changes are probably sufficient to account for the phenomena.  相似文献   

16.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

17.
1. By means of the Warburg-Barcroft microrespirometer apparatus and the Warburg direct method, the relative effect of caffeine upon the O2 consumption of the fertilized egg of Arbacia punctulata was shown for the following concentrations in sea water: 0.002 per cent (M/10,000), 0.004 per cent (M/5,000), 0.02 per cent (M/1,000), 0.1 per cent (M/200), 0.2 per cent (M/100), 0.5 per cent (M/40), and 2 per cent (M/10). 2. In comparison with the normal eggs (uninhibited, non-caffeine-treated controls), caffeine in concentrations including and greater than 0.1 per cent (M/200) depressed the average uptake from approximately 25 to 61 per cent over the 3 hour period. In a number of instances, as typified by Experiment 10, the effective inhibitory concentration ranged from 0.02 per cent (M/1,000) upward and the degree of depression of the O2 consumption ranged from 10.6 per cent to 60.6 per cent. 3. All caffeine concentrations including and above 0.02 per cent (M/1,000) in the series used, resulted in decreasing the normal rate of cleavage division in the fertilized Arbacia eggs. 4. The higher concentrations (0.5 and 2 per cent) produced a complete blockage of the cleavage process. 5. Complete cleavage inhibition was noted only when the O2 uptake had been depressed to 50 per cent or more of the normal controls. 6. O2 consumption-time relationship data indicate an average depression, in O2 consumption over a 3 hour period, ranging from 25 per cent with a caffeine concentration of 0.1 per cent to a 61 per cent inhibition with a concentration of 2 per cent. 7. Concentrations of less than 0.1 per cent (certainly of less than 0.02 per cent) give variable results and indicate no significant effect. 8. It is inferred from the respiration data presented that it is probable that the inhibition of the O2 consumption in fertilized Arbacia eggs is due to the influence of caffeine upon the main (activity or primary) pathway. It will be observed that there are certain similarities of the caffeine data to the degree of inhibition accomplished by sodium cyanide. Moreover, it has been demonstrated that the cyanide probably acts on the cytochrome oxidase step in the cytochrome oxidase-cytochrome chain of reactions constituting the O2 uptake phase of respiratory metabolism. It is not improbable, therefore, that caffeine also may act upon the cytochrome oxidase enzyme. 9. From the viewpoint of environmental conditions influencing reproductive phenomena, it is of interest that caffeine can affect the normal metabolism of the zygote.  相似文献   

18.
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l‐lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H‐2, a robust strain, was investigated for effective production of l‐lactic acid using long‐term repeated fed‐batch (LtRFb) fermentation. Kinetic characteristics of l‐lactic acid fermentation were analyzed by two models, showing that cell‐growth coupled production gradually replaces cell‐maintenance coupled production during fermentation. With the LtRFb strategy, l‐lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H‐2 can be used in the industrial production of l‐lactic acid with optimization based on kinetic modeling.  相似文献   

19.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

20.
1. 72 hour isolated chick hearts show an increase in pulsation rate when placed in M/1000, M/10,000, and M/50,000 l-tyrosine solutions. The optimal effect is seen in M/10,000 and M/50,000 l-tyrosine. 2. All hearts show disturbance of rhythm either in the form of irregular rhythm or heart block. 3. 62 hour isolated chick hearts are not susceptible to l-tyrosine while 96 hour hearts are markedly sensitive. 4. 72 hour isolated chick hearts placed in 1 part in 10,000 and 1 part in 50,000 l-epinephrine show approximately the same effects as were seen with l-tyrosine. 5. 72 hour isolated chick hearts placed in M/1000 and M/10,000 l-phenylalanine show an initial depression followed by an l-tyrosine effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号