首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In striking contrast to heartening events in the adjacent Amazon, Brazil's Cerrado biome has seen continued deforestation over the past decade. Though approved in 2012, no study evaluated the impacts of new Brazilian Forest Code (FC) revision on biodiversity and ecosystem services. Here, we report the first assessment of the likely loss and gain in biodiversity and ecosystem services expected if the FC is properly enforced across 200 million hectares of the Cerrado. We also discuss the challenges associated to compliance with the law and present opportunities for conservation. Establishing restoration programmes in private properties with currently less native vegetation than required by the FC could create habitat for 25% more threatened species than now found in these places and could also increase water security and carbon stock in 56.6 MtC. More important, trading environmental reserve quotas coupled with the strategic expansion of protected areas on private and public land could definitely rescue the Cerrado from the brink.  相似文献   

2.
Debate about the conservation value of secondary habitats has tended to focus on tropical forests, increasingly recognizing the role of secondary forests for biodiversity conservation. However, there remains a lack of information about the conservation value of secondary savannas. Here, we conducted a camera trap survey to assess the effect of secondary vegetation on large mammals in a Brazilian Cerrado protected area, using a single‐season occupancy framework to investigate the response of individual species (species‐level models) and of all species combined (community‐level models). In addition, we investigated the cost effectiveness of different sampling designs to monitor globally threatened species in the study area. At the community level, savanna that regenerated from eucalyptus plantation had similar occupancy estimate as old growth areas. At the species level, none of the ten species individually assessed seemed to respond to succession stage, with greater support for the effect of other covariates on occupancy, such as distance from water and vegetation physiognomy. These results demonstrate that secondary vegetation does not appear to negatively impact large mammals in the study area and suggest that, given a favorable context, Cerrado mammals can recolonize and use secondary savannas that regenerated from clearcut. However, our study area should be considered a best‐case scenario, as it retained key ecological attributes of high‐value secondary habitats. Our simulations showed that a sampling design with 60 camera trap sites surveyed during nine occasions is appropriate to monitor most globally threatened species in the study area, and could be a useful starting point for new monitoring initiatives in other Cerrado areas.  相似文献   

3.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

4.
The Cape Peninsula, a landscape of profound scenic beauty, is also botanically exceptionally species-rich and has high concentrations of both endemic and threatened plant species. Alien invasive trees, urban expansion and growing tourism are impacting increasingly on the landscape and biota. Three reserve scenarios were modelled, the primary objective being to maximize the conservation of biodiversity in a manner which takes both cost and efficiency into account. A comprehensive plant species database, an endemic animali species database, a vegetation type database, land-tenure and land-use data were used in this process. The resolution of all databases was by 1 km cells. The first scenario investigated the effectiveness of the existing reserve system in conserving the Peninsula's biodiversity. The second assessed the benefit of adding all publicly owned and to the existing reserves. In scenario three, a reserve-selection algorithm was applied to conserve those plant species outside existing reserves at least once. Where endemic animal species, and areas with high concentrations of threatened and endemic plant species were not adequately conserved, extra cells were added for their inclusion. Finally, one cell was added to cater for one inadequately conserved vegetation type. Fifty-one cells were needed to satisfy the requirements stipulated for scenario three. Analyses showed that 22% of plant species have all their records within existing reserves. Adding all public land improves the status to 43% with 97% having >50% of their records included in reserves. In scenario three, these figures are 32 and 87% respectively. In terms of animal species, four species are unconserved in scenario one, two in scenario two, and all species are conserved in scenario three. We conclude that scenarios two (including all public areas) and three (iterative selection to conserve each species once) provide practicable options for conserving the Peninsula's remaining biodiversity.  相似文献   

5.
Conservation ecology is a new paradigm of ecology that aims at scientific contributions to maintaining earth's biodiversity and is committed to ecosystem management indispensable to intergenerational long-term sustainability. Population ecology plays a central role in conservation ecology. Persistence of the metapopulation rather than that of each local population should be pursued in species conservation management. Biological interactions essential to reproduction and soil seed bank components of the population should be investigated and applied to planning for the conservation of a plant population. Gravelly floodplains and moist tall grasslands are among typical riparian habitats containing many threatened plants in Japan. These riparian habitats are now subjected not only to heavy fragmentation but also to intensive invasion of highly competitive alien (nonnative) plants. Extreme habitat isolation may result in reproductive failure or fertility selection in a plant population without pollinators, as exemplified by a nature reserve population of Primula sieboldii. Biological invasions, which are facilitated by extensive changes in the river environment including decreased seasonal flooding, abandonment of traditional vegetation management, eutrophication, and extensive clearing of the land for recreational use, threaten endemic riparian species. To preserve safe sites and growing conditions for threatened plants such as Aster kantoensis, active management to suppress the dominance of alien invader plants is necessary. Population management and habitat restoration should be based on sound information on the population ecology of both threatened and alien invader plants, designed as an ecological experiment to clarify effective ways for management. Received: September 18, 1998 / Revised: October 22, 2001 / Accepted: October 23, 2001  相似文献   

6.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

7.
The biodiversity of the Cape Peninsula (49127 ha in extent) has been considerably affected by various factors since European settlement in 1652. Urbanization and agriculture have transformed 37% of the original area of natural vegetation. Lowland vegetation types have been worst affected, with almost half of the transformation occurring in one of the 15 recognized vegetation types. Vegetation at high altitudes has been little affected by urbanization and agriculture, but alien trees and shrubs are now threatening biodiversity in these areas. Of the area not affected by urbanization and agriculture 10.7% is currently under dense stands (>25% canopy cover) of alien plants and another 32.9% is lightly invaded. Dense stands of Acacia cyclops, the most widespread invader, cover 2510 ha, 76% of the total area under dense alien stands. This paper assesses the impacts of these factors on aspects of the plant biodiversity of the area, namely, the distribution of major vegetation types and of endemic, rare and threatened plant taxa and of taxa in the Proteaceae (a prominent element in almost all communities, taken as an indicator of overall plant biodiversity).Possible future impacts on biodiversity are assessed by considering the effects of several scenarios involving increased urbanization and changes to alien plant control strategies and further spread over the next 50–100 years. The worst-case scenario for urbanization sees the area under natural vegelation reduced to 12163 ha (39.3% of its extent in 1994, or 24.8% of its original extent). Under this scenario almost a quater of the 161 endemic, rare and threatened (special) taxa are confined totally to urban areas; 57.4% of the known localities of these taxa, and 40.1% of the remaining localities of Proteaceae taxa are transformed. Dense alien stands currently affect 29.8% of the localities of special taxa known from herbarium records and 8.4% of these taxa currently occur only in areas at present affected by aliens. Clearing all dense stands would result in 62.9% of special taxa having less than half of their known localities affected (49.1% at present). Under this scenario, 92% of Proteaceae taxa have more than 75% of their localities unaffected by aliens. If clearing is confined to specific areas (the Cape Peninsula Protected Natural Environment or all publicly-owned land) and the aliens spread further outside these areas, the area of natural vegetation remaining shrinks (to 82.4% of the current extent if control is confined to public land). The further losses in biodiversity associated with these scenarios are described. If control programmes collapse and all potentially invadable land is occupied by dense alien stands, only 407 ha of natural vegetation would remain (1.5% of the current extent).The probability of the various scenarios materializing is discussed. To minimize further losses in biodiversity it is essential that: (1) a major initiative is launched immediately to clear (firstly) the 10184 ha of lightly invaded vegetation and then the 3313 ha of densely invaded vegetation; (2) no urban development be permitted within the boundaries of the Cape Peninsula Protected Natural Environment; (3) a systematic programme of prescribed burning (linked to the alien control programme) is initiated; and (4) contingency measures are implemented to improve the status of seriously threatened taxa, habitats and vegetation types.  相似文献   

8.
Hamiguitan Range is one of the wildlife sanctuaries in the Philippines having unique biodiversity resources that are at risk due to forest degradation and conversion of forested land to agriculture, shifting cultivation, and over-collection. Thus, it is the main concern of this research to identify and assess the endemic and endangered flora of Hamiguitan Range. Field reconnaissance and transect walk showed five vegetation types namely: agro-ecosystem, dipterocarp, montane, typical mossy and mossy-pygmy forests. Inventory of plant species revealed 163 endemic species, 35 threatened species, and 33 rare species. Assessment of plants also showed seven species as new record in Mindanao and one species as new record in the Philippines. Noteworthy is the discovery of Nepenthes micramphora, a new species of pitcher plant found in the high altitudes of Hamiguitan Range. This species is also considered site endemic, rare, and threatened. The result of the study also showed that the five vegetation types of Mt. Hamiguitan harbor a number of endangered, endemic, and rare species of plants. Thus, the result of this study would serve as basis for the formulation of policies for the protection and conservation of these species and their habitats before these plants become extinct.  相似文献   

9.
周韩洁  杨入瑄  李嵘 《广西植物》2022,42(10):1694-1702
全球气候变化与人为活动等因素导致的生物多样性丧失,引起了全球各界对生物多样性保护的高度关注。传统生物多样性保护主要对物种、特有种、受威胁物种的种类组成及其分布模式开展研究,忽视了进化历史在生物多样性保护中的作用。云南是全球生物多样性热点地区的交汇区,生物多样性的保护历来受到广泛关注,为了更好地探讨云南生物多样性的保护措施,该研究以云南被子植物菊类分支物种为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,识别生物多样性的重点保护区域。结果表明:云南被子植物菊类分支的物种、特有种及受威胁物种的物种密度与系统发育多样性均显著正相关;通过零模型分析发现,由南向北标准化系统发育多样性逐渐降低;云南南部、东南部、西北部是云南被子植物菊类分支的重点保护区域,加强这些区域的保护,将最大化地保护生物多样性的进化历史和进化潜能。由此可见,融合进化历史信息的植物多样性格局分析不仅有助于更加深入地理解植物多样性的形成与演变,也为生物多样性保护策略的制定提供更多的思路。  相似文献   

10.
The analyses of congruencies among biodiversity components address the issue of conservation priorities, but previously they have been done at coarse scales with limited relevance for conservation actions. Moreover, these former studies consider only the species level components of biodiversity and not the intra-specific evolutionary legacy that influences future biodiversity. This study represents the first assessment of congruencies between various components of plant biodiversity and the evolutionary legacy of a narrow endemic taxon (Arenaria provincialis, Caryophyllaceae). Assessment is conducted in the vicinity of a Mediterranean big city (Marseille, S.E. France) where habitats and flora are threatened by mass tourism and urban sprawl. Our analyses reveal that the different plant biodiversity facets assessed are spatially mismatched and unequally protected. Moreover, by using only species-level components of biodiversity as conservation targets we ignore crucial areas for the evolutionary legacy of this narrow endemic plant. Our results highlight the crucial role of phylogeography as a criterion to target the genetic precursors of future biodiversity in conservation planning.  相似文献   

11.
The wildlife of the Brazilian Cerrado is threatened by large-scale habitat loss, in particular due to conversion to agricultural land. It is essential to study how the mammal fauna copes with the highly fragmented, human-influenced, non-protected landscape. The paper presents the results of a survey of the large to medium-sized mammals of a typical cattle ranch with a mixture of human-created and natural vegetation types. We recorded 18 species. Surprisingly, several species were found to still thrive in the area, however, many species are rare or have become extinct. We conclude the paper with comments relevant for the conservation of mammals in the Cerrado as a whole.  相似文献   

12.
Restricted-Range Fishes and the Conservation of Brazilian Freshwaters   总被引:1,自引:0,他引:1  

Background

Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce.

Methodology/Principal Findings

Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future.

Conclusions/Significance

We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet.  相似文献   

13.
Historically, conservation‐oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land‐use and land‐cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land‐use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km3 less (?3%) water than if the land cover had been native Cerrado vegetation. ET from single‐cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double‐cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December–May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.  相似文献   

14.

Understanding how microclimate and vegetation are associated during secondary succession is of primary importance for plant conservation in the face of the increasing land cover modification. However, these patterns are still unstudied for many plant communities. This study aimed to evaluate the structure (species richness, Shannon's diversity index, Simpson´s dominance index, abundance of each species, average height of species, species cover (%), species composition, and indicator values) of a low thorn forest fragment and to analyze its relation with microclimate along a successional gradient. Four stages of succession were delimited by the analysis of Landsat images, in the state of Tamaulipas, northeast Mexico. Statistical models incorporated species richness, diversity indices, abundance, height, and cover, as variables for searching differences between stages, or to evaluate microclimate associations. A total of 70 species, 54 genera, and 27 families were determined. Height of tree layer was the most important variable for discrimination of the successional stages. Conserved areas differed floristically from other stages, associated mainly with the lowest values of wind speed originated by tree layer characteristics. A significant association between species and microclimate was found, being wind speed and relative humidity the most important variables. Some species, due to their high importance values and their patterns of association with microclimate, may be considered as key taxa for low thorn forest, which is a threatened semitropical community in northeast Mexico. Conserved and late successional areas account for climatic regulation of this plant community, and the importance of these forest patches may be considered when establishing biodiversity protection areas.

  相似文献   

15.
The Cerrado is one of the most threatened biomes in Brazil, with little spatial representation within the Protected Area network. Recently, proposed conservation plans worldwide have advocated for the use of multiple biodiversity facets to protect unique evolutionary and functional processes. Our aim was to identify areas with high biodiversity representativeness applying this multifaceted perspective, and propose conservation plans based on the joint analysis of taxonomic, functional and phylogenetic diversity. We used a database of the Brazilian National Program for Research in Biodiversity, which employs a standard protocol for sampling tadpoles. The Cerrado database includes samples from 165 water bodies spread over 15 localities, covering most of the Central Brazilian Cerrado. We selected four morphological traits to calculate functional diversity and used a dated phylogeny available in the literature to compute phylogenetic diversity. Our approach selected five priority areas for conservation, one of which is already protected. Our results highlighted the importance of four new areas which show high values of diversity, including original lineages and traits, and urgently need conservation prioritization. Furthermore, unlike the current protected network, our approach performs significantly better than random at protecting sites with high phylogenetic and functional diversity. We therefore discuss how the multifaceted indices considered can help protect key ecosystem functions and evolutionary legacy in anuran communities of the Brazilian Cerrado.  相似文献   

16.
In the European Union, the Directive 92/43/EEC defines a number of species and habitats of community interest that are worthy to be preserved because in danger to disappear or because they are representative of the different European bio-geographical regions. In the light of the limited economic resources generally allocated to conservation efforts, there is the necessity to prioritise conservation actions in order to avoid deterioration of protected areas. To this aim, in the present study the most representative habitats of the Italian Alps are compared on the basis of vascular plant biodiversity and a conservation priority index is proposed for each habitat taking into account the potential distribution of 252 threatened vascular plant species. Rocky slopes, screes and alpine grasslands resulted to have the greatest percentage of endemic plant species so reflecting the general distributional pattern of endemic plant species at high altitudes in Eurasian mountains. The relationship between the conservation priority index and the corresponding habitat extent within the Natura 2000 network suggests that peatlands, arid grasslands, wet meadows and freshwater habitats deserve a higher priority in conservation actions. Although vascular plant biodiversity is not necessarily a surrogate of overall biodiversity of Alpine habitats, the results here reported can be used as an initial reference framework for prioritising conservation actions, so as to accomplish the provisions of Article 6 of Habitats Directive.  相似文献   

17.
Aims Soil plays an important role in the formation and heterogeneity of habitats and thus can cause changes in vegetation structure and plant diversity. The differentiation between Cerrado/savanna and forest is well known, but the relationship between soil and habitats from savannic or forest formations still needs to be better understood, particularly in tropical ecotonal areas. We studied the association between attributes of plant communities, namely structure and diversity, and physicochemical characteristics of soils in the Caatinga domain at the transition to Cerrado in Brazil.Methods Chemical and physical analyses of soils were performed in samples of 38 plots from savannic formations and 30 plots from forest formations. Vegetation was characterized floristically and structurally in all plots, five habitats being assessed in each plant formation. Soil features and vegetation parameters were highly distinct among the different habitats.Important findings In general, forest habitats were more nutrient rich than savannic formation. Furthermore, soil variables showed effects both on vegetation structure and on its species diversity, more pronouncedly in the savannic formations. Habitats were structurally distinct, and diversity differed between savannic and forest communities; however, a higher differentiation occurred when the savannic formation habitats were compared among them. Although plant diversity did not differ among forest formation habitats, soil attributes showed a close relationship with edaphic factors and can contribute for similar vegetation. The soil–vegetation relationship in highly diverse ecotonal landscapes is important from the conservation biology point of view and aid in the execution of proactive plans for the maintenance of biodiversity. Thus, we noticed that diversity and soil behaves distinctly between savannic and forest communities.  相似文献   

18.
Secondary forests in Central Africa are increasing in importance for biodiversity conservation as old growth forests outside the few protected areas are disappearing rapidly. We examined vegetation recovery in a lowland rain forest area in Cameroon based on a detailed botanical survey of old growth forest and different-aged logging gaps (5–27 years) and shifting cultivation fields (10–60 years). Our analysis focuses on the long-term recovery of botanical conservation values by analysing trends in vegetation structure, species composition, species diversity and levels of endemism and rarity. In the total survey (4.25 ha), we recorded 834 species of which 23% were endemic to the Lower Guinea forest region. The proportion of endemic species was high in shrubs and low in herbs. Geographic range and (local) rarity were not significantly associated. The proportion of rare species (relative frequency <10%) was high in woody climbers and low in trees. In logging gaps, recovery of all vegetation characteristics was relatively quick (5–14 years). Recovery in shifting cultivation sites took longer (30–60 years). Endemic species were found to be highly sensitive to shifting cultivation practices and even after 50–60 years the level of endemism was still significantly lower compared to old growth forest. The proportion of rare species was not significantly different between disturbed sites and old growth forest. We conclude that secondary forests can contribute to biodiversity conservation, e.g. as buffer zones around protected areas. However, this contribution should be assessed differently between land use types and widespread versus endemic species.  相似文献   

19.
Biodiversity hotspots are used widely to designate priority regions for conservation efforts. It is unknown, however, whether the current network of hotspots adequately represents globally threatened taxonomic diversity for whole plant and animal groups. We used a mammalian group traditionally neglected in terms of conservation efforts, the rodents, in order to test whether biodiversity hotspots match the current distribution of threatened taxa (genera and species). Significantly higher numbers of threatened rodent genera and species fell within biodiversity hotspots; nonetheless over 25% of the total threatened genera and species did not occur in any biodiversity hotspot. This was particularly true for the Australian region, where 100% of the threatened genera and species fell outside biodiversity hotspots, with many threatened taxa found in Papua-New Guinea. We suggest to officially including Papua New Guinea among biodiversity hotspots for rodents, and also the steppic/semidesert areas of central Asia.  相似文献   

20.
Rivers of the Cape Floristic Region (CFR) biodiversity hotspot are threatened by land transformation. This region is a centre of endemism for many taxa, including Odonata. These insects are highly sensitive to changes in physical habitat structure, which makes them good bioindicators, and this led to the development of the Dragonfly Biotic Index (DBI). We investigated the effects of local agricultural and urban land transformations on Odonata species richness, assemblage composition and DBI scores in three CFR rivers. A total of 48 sites were selected and categorized as natural, agricultural or urban land use. Adult male Odonata and four environmental variables were recorded over two seasons. Land transformation significantly influenced Odonata assemblage composition but did not always significantly reduce species richness. Average vegetation height also affected Odonata assemblage composition and decreased species richness. Agricultural and urban sites had Odonata assemblages differing from those in the natural areas. Agricultural and urban local land use types reduced opportunities for some endemic species but provided for the persistence and establishment of widespread, generalist species, as indicated by great changes in DBI scores. Mitigating the adverse influences of land transformation through establishment of protected areas is essential for the conservation of rare taxa, particularly in an area with a high number of endemic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号