首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Bullfrogs (Rana catesbiana) and rats have been subjected to high barometric pressures and studied for bubble formation on subsequent decompression to sea level. Pressures varying from 3 to 60 pounds per square inch, in excess of atmospheric pressure, were used. 2. Muscular activity after decompression is necessary for bubble formation in bullfrogs after pressure treatment throughout the above range. Anesthetized frogs remained bubble-free following decompression. Rats compressed at 15 to 45 pounds per square inch likewise did not contain bubbles unless exercised on return to sea level. 3. Bubbles form without voluntary muscular activity in anesthetized rats previously subjected to pressure of 60 pounds per square inch. Small movements involved in breathing and other vital activities are believed sufficient to initiate bubbles in the presence of very high supersaturations of N2. 4. Bubbles appear (with exercise) in rats previously compressed at 15 pounds per square inch, and in bullfrogs subjected to pressure at levels as low as 3 pounds per square inch above atmospheric pressure. The percentage drop in pressure necessary for bubble formation is less in compressed animals than in those decompressed from sea level to simulated altitudes. 5. The action of exercise on bubble formation in compressed frogs and rats is attributed to mechanical factors associated with muscular activity, combined with the high supersaturation of N2. CO2 probably is not greatly involved, since its concentration does not reach supersatuation, as it does at high altitude. 6. Anoxia following decompression from high barometric pressures has no observable facilitating effect on bubble formation.  相似文献   

2.
1. Muscular activity during decompression causes bubble formation in the blood of intact bullfrogs. The amount of gas liberated depends on the degrees of muscular activity and supersaturation (as influenced by altitude). In decompressed dissected bullfrogs, bubbles appear in veins leading from active but not from inactive muscles. 2. Muscular activity during decompression similarly causes bubble formation in rats. Bubbles appear in veins coming from muscles, and often in the lymphatic system. Quiescent rats do not form bubbles. 3. Violent muscular activity before decompression favors bubble formation in bullfrogs during ensuing decompression, but it is less effective than exercise during decompression. The effect persists in large frogs for about an hour. 4. Pre-oxygenation for 2 to 4 hours before decompression reduces the incidence of bubble formation in decompressed bullfrogs. It thus has the same effect on bubble formation in bullfrogs as it does on the "bends" in man. The effect is presumably due to removal of nitrogen. 5. Possible mechanisms by which muscular activity causes bubble formation are discussed. The effects of mechanical agitation and of metabolic CO2 are considered to be the dominant factors.  相似文献   

3.
1. A heavy ingestion of frothy emulsified fat by rats and bullfrogs does not increase susceptibility to bubble formation when the animals are decompressed 2 to 72 hours later. This indicates that gaseous films (bubble nuclei) initially present do not pass across the intestinal wall with the digested fat, and also that high fat content per se in the lymph and blood does not increase susceptibility to bubble formation. 2. Liquid caprylic acid injected into veins of bullfrogs crystallizes when the frogs are cooled. The crystallization causes bubbles to form without muscular activity on subsequent decompression. Cooling normal bullfrogs to 1–2°C. fails, however, to crystallize any substances occurring naturally in the animals that might act in a similar manner. 3. When bullfrogs are cooled (e.g. to –5° to –10°C.) until ice forms in the blood vessels, and are then warmed and decompressed, bubbles form in the absence of exercise. Crystallization of water in the body thus forms nuclei or even small bubbles that persist. If only one foot is frozen, bubbles originate in the frozen foot. In some cases visible bubbles were observed in thawed feet at sea level (i.e. without decompression). When frog''s blood is partly frozen in test tubes or in tied off sections of veins, bubbles will appear on decompression in the absence of mechanical agitation. The practical relation of this phenomenon to flight at high altitude should not be overlooked. 4. Fracturing a leg bone (tibia or femur) in a frog induces bubble formation on subsequent decompression. Bubble nuclei, which persist for ½ to 1 hour, are probably formed as a result of the intense mechanical disturbance when the bone snaps. Fracturing of bone is considerably more effective than crushing muscles for producing bubbles in frogs.  相似文献   

4.
In vivo bubble formation was studied in the megalopal stage of the crab Pachygrapsus crassipes. The animals were equilibrated with elevated argon, nitrogen, or helium pressures then rapidly decompressed to atmospheric pressure. Voluntary motions induced bubble nucleation in leg joints after exposures to as low as 2 atm nitrogen (gauge pressure). Delays of several minutes sometimes passed between decompression and bubble formation. Mechanically stimulating the animals to move their legs increased this bubble formation, whereas immobilizing the legs before gas equilibration prevented it, even in animals decompressed from 150 atm nitrogen. We conclude that preformed nuclei are not responsible for bubbles developing in the legs of this animal. Instead, tribonucleation of bubbles apparently occurs as a result of limb motions at relatively low gas supersaturations.  相似文献   

5.
It has previously been reported that a nitric oxide (NO) donor reduces bubble formation from an air dive and that blocking NO production increases bubble formation. The present study was initiated to see whether a short-acting NO donor (glycerol trinitrate, 5 mg/ml; Nycomed Pharma) given immediately before start of decompression would affect the amount of vascular bubbles during and after decompression from a saturation dive in pigs. A total of 14 pigs (Sus scrofa domestica of the strain Norsk landsvin) were randomly divided into an experimental (n = 7) and a control group (n = 7). The pigs were anesthetized with ketamine and alpha-chloralose and compressed in a hyperbaric chamber to 500 kPa (40 m of seawater) in 2 min, and they had 3-h bottom time while breathing nitrox (35 kPa O(2)). The pigs were all decompressed to the surface (100 kPa) at a rate of 200 kPa/h. During decompression, the inspired Po(2) of the breathing gas was kept at 100 kPa. Thirty minutes before decompression, the experimental group received a short-acting NO donor intravenously, while the control group were given equal amounts of saline. The average number of bubbles seen during the observation period decreased from 0.2 to 0.02 bubbles/cm(2) (P < 0.0001) in the experimental group compared with the controls. The present study gives further support to the role of NO in preventing vascular bubble formation after decompression.  相似文献   

6.
Fluid dynamics of anaerobic fermentation   总被引:2,自引:0,他引:2  
In beer fermentation, yeast cells are kept in suspension, despite their higher density, by natural agitation created by ascending CO2 bubbles. Yeast cells are unable to nucleate bubbles but instead release CO2 in a soluble form in such a way that the medium tends to become supersaturated. A higher concentration of yeast cells and the presence of solid particles cause the formation of bubbles at the bottom of the fermenter and practically only there. The rising bubbles grow and accelerate by sweeping the CO2 formed throughout the fermenter by the suspended yeast cells, thereby creating a fluid regime. A mathematical expression relating the bubble agitation power to the fermentation parameters was obtained and used to design more efficient fermenter shapes.  相似文献   

7.
Following stimulation of the vestibular nerve in the rabbit, respiratory enzyme activities increased in Deiters' nerve cells. The anaerobic glycolysis, measured as 10-4 µl CO2 per hour per cell, was found to decrease concomitantly by 25 to 40 per cent, suggesting a Pasteur effect. By contrast, in the surrounding glia the anaerobic glycolysis increased and the respiratory enzyme activity decreased, suggesting a Crabtree effect. The evidence is discussed for a regulatory metabolic mechanism operating between the neuron and its glia. Hypoxia of 8 per cent O2 caused an increase of both oxygen consumption and CO2 production in the nerve cells, but did not change the glia values.  相似文献   

8.
In vivo bubble formation was studied in various crustaceans equilibrated with high gas pressures and rapidly decompressed to atmospheric pressure. The species varied widely in susceptibility to bubble formation, and adults were generally more susceptible than larval stages. Bubbles did not form in early brine shrimp larvae unless equilibration pressures of at least 175 atm argon or 350 atm helium were used; for adult brine shrimp, copepods, and the larvae of crabs and shrimps, 100-125 atm argon or 175-225 atm helium were required. In contrast, bubbles formed in the leg joints of megalopa and adult crabs following decompression from only 3-10 atm argon; stimulation of limb movements increased this bubble formation, whereas inhibition of movements decreased it. High hydrostatic compressions applied before gas equilibration or slow compressions did not affect bubble formation. We concluded that circulatory systems, musculature, and storage lipids do not necessarily render organisms susceptible to bubble formation and that bubbles do not generally originate as preformed nuclei. In some cases, tribonucleation appears to be the cause of the bubbles.  相似文献   

9.
Cells of Tetrahymena pyriformis, T. thermophila, and Euglena gracilis were saturated with nitrogen gas at pressures up to 300 atm and rapidly decompressed. Damage was assessed by measuring post-decompression cell fragmentation or viability. Occurrence of intracellular bubbles was determined by cinephotomicrography performed during the decompression or by direct observations afterwards. The extreme gas supersaturations induced led to intracellular bubble formation and rupture in cells of Tetrahymena that contained food vacuoles, but only with supersaturations of 175 atm or higher; 225 atm left few cells intact. Bubbles were never observed in cells of Euglena or in Tetrahymena cells freed of food vacuoles, even when they were decompressed from substantially higher nitrogen supersaturations. Cells of Euglena were most resistant and were unaffected by supersaturations up to 250 atm.  相似文献   

10.
Glycolytic activity of rat peritoneal mast cells has been measured by the Cartesian ampulla diver technique. The rates of anaerobic glycolysis, expressed as CO2 expelled from a bicarbonate medium, are 1.70 x 10-6 µl and 1.43 x 10-6 µl per cell per hour with and without glucose, respectively. The aerobic glycolysis rate in the presence of glucose, assuming the respiratory quotient to be 1, is 0.93 x 10-6 µl CO2 per cell per hour. It is pointed out that the anaerobic and non-respiratory aerobic carbon dioxide production by mast cells is much higher than the respiratory oxygen uptake reported previously. These values have been interpreted in terms of glucose utilization.  相似文献   

11.
Anoxic wetlands are an important source for the greenhouse gas CH4, much of which is emitted in form of gas bubbles. The conditions for formation of gas bubbles have recently been described by an analytical model, which allows the prediction of fluxes by first physical principles using the knowledge of gas concentration profiles and/or gas production rates. We tested parts of this model by experiments using microcosms of flooded, non-vegetated and homogeneous rice field soil incubated under different gas atmospheres and at different temperatures. In these experiments we determined rates of CH4 and CO2 production, upper boundaries of the bubble zone, gas-filled porosities and vertical profiles of dissolved CH4, CO2 and N2. The results of our experiments confirmed that by knowing only one of the following parameters, i.e. CH4 production, diffusive CH4 flux and depth of upper boundary of bubble zone, the remainder could be predicted from the model. On average, predicted values differed from experimental ones by a factor of 0.4 –2.7, depending on which parameter was taken as an input for the model. It was possible to predict the percentage of gas bubble flux from measured CH4 emission rates under the experimental conditions, which was on the order of 90%. The confrontation of the model with experimental data showed that the effect of the shallow upper oxic layer on bubble formation was negligible and that the CH4 diffusive flux is easily underestimated by experiments lacking sufficient spatial resolution. Therefore, CH4 production rates lower than in our microcosms would allow a more precise test of the model by creating less steep concentration gradients, which, however, would require long incubation times to purge the dissolved N2 from the soil by ebullition and to reach true steady state.  相似文献   

12.
In response to exercise performed before or after altitude decompression, physiological changes are suspected to affect the formation and growth of decompression bubbles. We hypothesized that the work to change the size of a bubble is done by gas pressure gradients in a macro- and microsystem of thermodynamic forces and that the number of bubbles formed through time follows a Poisson process. We modeled the influence of tissue O(2) consumption on bubble dynamics in the O(2) transport system in series against resistances, from the alveolus to the microsystem containing the bubble and its surrounding tissue shell. Realistic simulations of experimental decompression procedures typical of actual extravehicular activities were obtained. Results suggest that exercise-induced elevation of O(2) consumption at altitude leads to bubble persistence in tissues. At the same time, exercise-enhanced perfusion leads to an overall suppression of bubble growth. The total volume of bubbles would be reduced unless increased tissue motion simultaneously raises the rate of bubble formation through cavitation processes, thus maintaining or increasing total bubble volume, despite the exercise.  相似文献   

13.
Bacteria without (Escherichia coli and Corynebacterium xerosis) and with gas vacuoles (Microcyclus aquaticus) were saturated with Ar or N2 gas at pressures up to 300 atm and then rapidly decompressed. The resulting intracellular gas supersaturations had no effect on the viability of the bacteria except when the gas vesicles were purposely kept intact by slow pressurization rates. Thus no gas bubbles form within the cells even at these extreme supersaturations. This contradicts earlier interpretations of the cause of the disruptive effect on various cells by gas pressurization and decompression.  相似文献   

14.
p6rly detection of bubbles may provide clues to the mechanism of their formation, and a knowledge of their extent during a decompression may allow the prevention of decompression sickness. We have used ultrasound imaging to study bubble formation in peripheral tissues. The results suggest that: (a) a threshold supersaturation for bubble formation exists; (b) the earliest bubbles are intravascular; (c) before signs of decompression sickness a substantial accumulation of stationary bubbles occurs. Despite the success of Doppler methods in detecting moving bubbles after decompressions normally considered safe, recent studies have shown that the correlation between number of bubbles detected and symptoms of decompression sickness is often poor. We have used a time integral of the ultrasound images, which avoids laborious image analysis, to follow the extent of both moving and stationary bubbles. Human trials involving a wide variety of decompressions suggest that correct prediction of symptoms is possible.  相似文献   

15.
Introduction: We investigated whether adding ultrafine (nano-scale) oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2) could result in safe, long-duration anesthesia for fish. Results: To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2–3 hours after cessation of anesthesia. Conclusions: The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.  相似文献   

16.
Three freshwater and one marine algal species were grown under inorganic carbon limitation in laboratory continuous cultures. Comparisons were made between HCO3? alkalinity and bubbled CO2 as carbon sources. HCO3? alkalinity was an excellent source of inorganic carbon below specific pH levels, but chemical precipitation at high pH placed an upper limit on productivity that was far lower than potential light-limiting levels. With bubbled CO2 it was possible to achieve light limitation. The main factor controlling productivity was the mass flux of inorganic carbon added to the culture, which is the product of gas flow rate and influent P level. Small bubbles were more efficient than large bubbles at low gas flow rates and P levels, but led to froth flotation of algal cells and concomitant reductions in productivity at high bubble rates. At 1% CO2 productivity was still dependent on mass fluxes of added carbon, but was independent of bubble size. At high bubble rates with 1% CO2 narcosis was evident. Maximum yields occurred at intermediate dilution rates when inorganic carbon was supplied via bubbled gas.  相似文献   

17.
Decompression sickness in diving is recognized as a multifactorial phenomenon, depending on several factors, such as decompression rate and individual susceptibility. The Doppler ultrasonic detection of circulating venous bubbles after diving is considered a useful index for the safety of decompression because of the relationship between bubbles and decompression sickness risk. The aim of this study was to assess the effects of ascent rate, age, maximal oxygen uptake (VO(2 max)), and percent body fat on the production of bubbles after diving. Fifty male recreational divers performed two dives at 35 m during 25 min and then ascended in one case at 9 m/min and in the other case at 17 m/min. They performed the same decompression stops in the two cases. Twenty-eight divers were Doppler monitored at 10-min intervals, until 60 min after surfacing, and the data were analyzed by Wilcoxon signed-rank test to compare the effect of ascent rate on the kinetics of bubbles. Twenty-two divers were monitored 60 min after surfacing. The effect on bubble production 60 min after surfacing of the four variables was studied in 47 divers. The data were analyzed by multinomial log-linear model. The analysis showed that the 17 m/min ascent produced more elevated grades of bubbles than the 9 m/min ascent (P < 0.05), except at the 40-min interval, and showed relationships between grades of bubbles and ascent rate and age and interaction terms between VO(2 max) and age, as well as VO(2 max) and percent body fat. Younger, slimmer, or aerobically fitter divers produced fewer bubbles compared with older, fatter, or poorly physically fit divers. These findings and the conclusions of previous studies performed on animals and humans led us to support that ascent rate, age, aerobic fitness, and adiposity are factors of susceptibility for bubble formation after diving.  相似文献   

18.
Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
Aerobic and anaerobic respiration in the intact spinach chloroplast   总被引:3,自引:3,他引:0       下载免费PDF全文
Aerobic and anaerobic chloroplastic respiration was monitored by measuring 14CO2 evolution from [14C]glucose in the darkened spinach (Spinacia oleracea) chloroplast and by estimating the conversion of fructose 1,6-bisphosphate to glycerate 3-phosphate in the darkened spinach chloroplast in air with O2 or in N2 with nitrite or oxaloacetate as electron acceptors. The pathway of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide and glycolate 2-phosphate under air or N2 were those expected from the oxidative pentose phosphate cycle and glycolysis. Of the electron acceptors, O2 was the best (2.4 nanomoles CO2 per milligram chlorophyll per hour), followed by nitrite and oxaloacetate. With respect to glycerate 3-phosphate formation from fructose 1,6-bisphosphate, methylene blue increased the aerobic rate from 3.7 to 5.4 micromoles per milligram chlorophyll per hour. A rate of 4.8 micromoles per milligram chlorophyll per hour was observed under N2 with nitrite and oxaloacetate.  相似文献   

20.
Effects of pressure reduction, decompression rate, and repeated exposure on venous gas bubble formation were determined in five groups (GI, GII, GIII, GIV, and GV) of conscious and freely moving rats in a heliox atmosphere. Bubbles were recorded with a Doppler ultrasound probe implanted around the inferior caval vein. Rats were held for 16 h at 0.4 MPa (GI), 0.5 MPa (GII and GIII), 1.7 MPa (GIVa), or 1.9 MPa (GIV and GV), followed by decompression to 0.1 MPa in GI to GIII and to 1.1 MPa in GIV and GV. A greater decompression step, but at the same rate (GII vs. GI and GIVb vs. GIVa), resulted in significantly more bubbles (P < 0.01). A twofold decompression step resulted in equal amount of bubbles when decompressing to 1.1 MPa compared with 0.1 MPa. The faster decompression in GII and GVa (10.0 kPa/s) resulted in significantly more bubbles (P < 0.01) compared with GIII and GVb (2.2 kPa/s). No significant difference was observed in cumulative bubble score when comparing first and second exposure. With the present animal model, different decompression regimes may be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号