首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conjugate of triphosphorylated 2′,3′-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183?±?57?µg/mL, which corresponds to 22?±?7?µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.  相似文献   

2.
Colon-specific azo based polyphosphazene–anticancer drug conjugates (1118) have been synthesized and evaluated by ex-vivo release studies. The prepared polyphosphazene drug conjugates (1118) are stable in acidic (pH = 1.2) buffer which showed that these polymer drug conjugates are protected from acidic environment which is the primary requirement of colon specific targeted drug delivery. The ex-vivo release profiles of polyphosphazene drug conjugates (1118) have been performed in the presence as well as in the absence of rat cecal content. The results showed that more than 89% of parent drugs (methotrexate and gemcitabine) are released from polymeric backbone of polyphosphazene drug conjugates (14 and 18) having n-butanol (lipophilic moiety). The in-vitro cytotoxicity assay has also been performed which clearly indicated that these polymeric drug conjugates are active against human colorectal cancer cell lines (HT-29 and COLO 320 DM). The drug release kinetic study demonstrated that Higuchi’s equation is found to be best fitted equation which showed that release of drug from polymeric backbone as square root of time dependent process based on non-fickian diffusion. Therefore, the synthesized polyphosphazene azo based drug conjugates of methotrexate and gemcitabine are the potential candidates for colon targeted drug delivery system with minimal undesirable side effects.  相似文献   

3.
Low water solubility and rapid elimination from the brain inhibits local delivery via implants and other delivery systems of most therapeutic drugs to the brain. We have conjugated the chemotherapy drug, camptothecin (CPT), to poly(ethylene glycol) (PEG) of molecular weight 3400 using previously established protocols. These new conjugates are very water-soluble and hydrolyze at a pH-dependent rate to release the active parent drug. We have studied the uptake of these conjugates by cells in vitro and quantified their cytotoxicity toward gliosarcoma cells. These conjugates were loaded into biodegradable polymeric controlled-release implants, and their release characteristics were studied in vitro. We implanted similar polymeric disks into rat brains and used a novel sectioning scheme to determine the concentration profile of CPT in comparison to conjugated CPT in the brain after 1, 7, 14, and 28 days. We have found that PEGylation greatly increases the maximum achievable drug concentration and greatly enhances the distribution properties of CPT, compared to corelease of CPT with PEG. Although only one percent of CPT in the conjugate system was found in the hydrolyzed, active form, drug concentrations were still significantly above cytotoxic levels over a greater distance for the conjugate system. On the basis of these results, we believe that PEGylation shows great promise toward increasing drug distribution after direct, local delivery in the brain for enhanced efficacy in drug treatment.  相似文献   

4.
To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 +/- 0.12 x 10-5 s -1 (fastest) and 4.50 +/- 0.31 x 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of "designer" drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.  相似文献   

5.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 degrees C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

6.
We have cloned and functionally expressed a sodium-dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells. Na(+)-dependent uptake of [3H]inosine in U251 cells transiently expressing hCNT2 was 50-fold greater than that in non-transfected cells, and uptake in Na(+)-containing medium was approximately 30-fold higher than that at Na(+)-free condition. The hCNT2 displayed saturable uptake of [3H]inosine with K(m) of 12.8 microM and V(max) of 6.66 pmol/mg protein/5 min. Uptake of [3H]inosine was significantly inhibited by the purine nucleoside drugs dideoxyinosine and cladribine, but not by acyclic nucleosides including acyclovir, ganciclovir, and their prodrugs valacyclovir and valganciclovir. This indicates that the closed ribose ring is important for binding of nucleoside drugs to hCNT2. Among several pyrimidine nucleosides, hCNT2 favorably interacted with the uridine analogue floxuridine. Interestingly, we found that benzimidazole analogues, including maribavir, 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were strong inhibitors of inosine transport, even though they have a significantly different heterocycle structure compared to a typical purine ring. As measured by GeneChip arrays, mRNA expression of hCNT2 in human duodenum was 15-fold greater than that of hCNT1 or hENT2. Further, the rCNT2 expression in rat duodenum was 20-fold higher than rCNT1, rENT1 or rENT2. This suggests that hCNT2 (and rCNT2) may have a significant role in uptake of nucleoside drugs from the intestine and is a potential transporter target for the development of nucleoside and nucleoside-mimetic drugs.  相似文献   

7.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 °C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

8.
Sixteen different taxoid conjugates were prepared by linking various anticancer compounds, including camptothecin (CPT), epipodophyllotoxin (EP), colchicine (COL), and glycyrrhetinic acid (GA), at the 2'- or 7-position on paclitaxel (TXL, 1) through an ester, imine, amine, or amide bond. Newly synthesized conjugates were evaluated for cytotoxic activity against replication of several human tumor cell lines. Among them, TXL-CPT conjugates, 8-10, were more potent than TXL itself against the human prostate carcinoma cell line PC-3 (ED(50)=14.8, 3.1, 19.4nM compared with 55.5nM), and conjugate 10 was also 8-fold more active than TXL against the LN-CAP prostate cancer cell line. These compounds also possessed anti-angiogenesis ability as well as lower inhibitory effects against a normal cell line (MRC-5). Thus, conjugates 8-10 are possible antitumor drug candidates, particularly for prostate cancer.  相似文献   

9.
In this paper, different electromigration methods used to monitor drugs and polymers released from drug delivery systems are reviewed. First, an introduction to the most typical arrangements used as drug delivery systems (e.g., polymer-drug covalent conjugates, membrane or matrix-based devices) is presented. Next, the principles of different capillary electromigration procedures are discussed, followed by a revision on the different procedures employed to monitor the release of drugs and the degradation or solubilization of the polymeric matrices from drug delivery systems during both in vitro and in vivo assays. A critical comparison between these capillary electrophoretic methods and the more common chromatographic methods employed to analyze drugs and polymers from drug delivery systems is presented. Finally, future outlooks of these electromigration procedures in the controlled release field are discussed.  相似文献   

10.
Cytosolic 5'(3')-deoxyribonucleotidase (cdN) and mitochondrial 5'(3')-deoxyribonucleotidase (mdN) catalyze the dephosphorylation of deoxyribonucleoside monophosphates and regulate dTTP formation in cytosol and mitochondria, protecting DNA replication from imbalanced precursor pools. They can also interfere with the phosphorylation-dependent activation of nucleoside analogues used in anticancer and antiviral treatment. To understand the relatively narrow substrate specificity of these two enzymes and their ability to use nucleotide analogues as substrates, we determined the crystal structures of human cdN in complex with deoxyuridine, murine cdN in complex with dUMP and dGMP, and human mdN in complex with the nucleotide analogues AZTMP and BVdUMP. Our results show that the active site residues Leu45 and Tyr65 in cdN form a more favorable binding surface for purine nucleotides than the corresponding Trp75 and Trp76 in mdN, explaining why cdN has higher activity for purine nucleotides than does mdN. The molecular interactions of mdN with AZTMP and BVdUMP indicate why these nucleotide analogues are poorer substrates as compared with the physiological substrate, and they provide a structural rationale for the design of drugs that are less prone to inactivation by the deoxyribonucleotidases. We suggest that introduction of substituents in the 3'-position may result in nucleoside analogues with increased resistance to dephosphorylation.  相似文献   

11.
Abstract

Cancer diseases are widely recognised as an important medical problem and killing millions of people in a year. Chemotherapeutic drugs are successful against cancer in many cases and different compounds, including the analogues of natural substances, may be used for anticancer agents. Nucleoside analogues also have become a necessity for the treatment of cancer diseases. Nucleoside, nucleotide and base analogues have been utilised for decades for the treatment of viral pathogens, neoplasms and in anticancer chemotherapy. This review focuses on the different types of nucleosides and their potential role as anticancer agents. It also discusses the nucleoside analogues approved by FDA and in process of approval. The effect of the substitution on the nucleoside analogues and their pharmacological role is also discussed in the review. Owing to the advances in computational chemistry, it concludes with the future advancement and possible outcome of the nucleoside analogues. Also, it depicts the development of heterocyclic nucleoside analogues, explores the QSAR of the synthesised compounds and discusses the 3?D QSAR pharmacophore modelling in order to examine their potential anti-cancer activities.  相似文献   

12.
ABSTRACT

The 5′-nucleotidase cN-II has been shown to be associated with the sensitivity to nucleoside analogues, the survival of cytarabine treated leukemia patients and to cell proliferation. Due to the lack of relevant cell models for solid tumors, we developed four cell lines with low cN-II expression and characterized them concerning their in vitro sensitivity to cancer drugs and their intracellular nucleotide pools. All four cell models had an important decrease of cN-II expression but did not show modified sensitivity, cell proliferation or nucleotide pools. Our cell models will be important for the study of the role of cN-II in human cancer cells.  相似文献   

13.
Phosphodiester linked conjugates of various nucleosides such as d4U, d4T, IdUrd, ddI, ddA, virazole, ara-A, and ara-C containing a glucosyl moiety have been described. These compounds were designed to act as prodrugs, where the corresponding 5'-monophosphates may be generated intracellularly. The synthesis of the glycoconjugates was achieved in good yields by condensation of a glucosyl phosphoramidite 7 with nucleosides in the presence of an activating agent. It was demonstrated that the glucose conjugates improve the water solubility of the nucleoside analogues, for example, up to 31-fold for the ara-A conjugate compared to that of ara-A alone. The new conjugates were tested for their anti-HIV-1 activity in human lymphocytes. These derivatives offer a convenient design for potential prodrug candidates with the possibility of improving the physicochemical properties and therapeutic activity of nucleoside analogues.  相似文献   

14.
Cordycepin: A bioactive metabolite with therapeutic potential   总被引:1,自引:0,他引:1  
Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment.  相似文献   

15.
16.
A novel intracellular pH-sensitive polymeric micelle drug carrier that controls the systemic, local, and subcellular distributions of pharmacologically active drugs has been developed in this study. The micelles were prepared from self-assembling amphiphilic block copolymers, poly(ethylene glycol)-poly(aspartate hydrazone adriamycin), in which the anticancer drug, adriamycin, was conjugated to the hydrophobic segments through acid-sensitive hydrazone linkers. By this polymer design, the micelles can stably preserve drugs under physiological conditions (pH 7.4) and selectively release them by sensing the intracellular pH decrease in endosomes and lysosomes (pH 5-6). In vitro and in vivo studies show that the micelles have the characteristic properties, such as an intracellular pH-triggered drug release capability, tumor-infiltrating permeability, and effective antitumor activity with extremely low toxicity. The acquired experimental data clearly elucidate that the optimization of both the functional and structural features of polymeric micelles provides a promising formulation not only for the development of intracellular environment-sensitive supramolecular devices for cancer therapeutic applications but also for the future treatment of intractable cancers with limited vasculature.  相似文献   

17.
Water soluble polymer anticancer conjugates can improve the pharmacokinetics of covalently bound drugs by limiting cellular uptake to the endocytic route, thus prolonging plasma circulation time and consequently facilitating tumor targeting by the enhanced permeability and retention (EPR) effect. Many of the first generation antitumor polymer conjugates used nonbiodegradable polymeric carriers which limits the molecular weight that can be safely used to <40,000 g/mol. The aim of this ambitious study was to synthesize and evaluate a novel, prototype biodegradable polymeric system based on high molecular weight, water-soluble functionalized polyesters. The main polymeric platform was prepared from bis(4-hydroxy)butyl maleate (DBM) and poly(ethylene glycol) (PEG4000) blocks to give the polymer DBM2-PEG4000 containing biodegradable carbonate bonds and having a M(w) of 100,000-190,000 g/mol; M(n) of 37,000-53,000 g/mol, and M(w)/M(n) of 3.0-3.7. Using thioether linkages, this polymer was then grafted with HS-PEG3000-Gly-Phe-Lue-Gly doxorubicin (HS-PEG3000-GFLG-Dox) pendant side chains ( approximately 30 per DBM2-PEG chain). The final construct, DBM2-PEG4000-S-PEG3000-GFLG-Dox had a total Dox content of 3-4 wt % and a free Dox content of < or = 0.7% total Dox. During incubation with isolated lysosomal enzymes, the rate of Dox release from the polymer backbone was relatively slow (<5% release over 5 h) compared to that seen for PEG5000-GFLG-Dox alone (>20% over 5 h). The in vitro cytotoxicity was assessed using B16F10 murine melanoma (MTT assay). DBM2-PEG4000-S-PEG3000-GFLG-Dox was 10-20-fold less toxic than free Dox. In vivo antitumor activity of the DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates was assessed using a subcutaneous (s.c.) B16F10 murine melanoma model, and an intraperitoneal (i.p.) L1210 leukaemia model. The increased toxicity (attributed to poor solubility) and low antitumor activity of DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates compared to PEG5000-GFLG-Dox and HPMA copolymer-Dox conjugates was attributed to the slow rate of Dox release. The DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates were considered unfavorable as candidates for further development. However, the successful scale-up synthesis of DBM2-PEG4000-S-PEG3000 constructs suggest that they are worthy of further investigation as carriers for controlled release and targeting of less hydrophobic agents.  相似文献   

18.
To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of "off target effects." However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔT(agg) around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design.  相似文献   

19.
E Hurwitz 《Biopolymers》1983,22(1):557-567
Antineoplastic drugs such as daunomycin, adriamycin, methotrexate, 5-fluorouridine, cytosine arabinoside, and platinate were bound to antibodies directly or via a polymeric bridge. The drug antibody conjugates retained most of their drug and antibody activities when tested in vitro. Daunomycin–antibody conjugates were shown to penetrate tumor cells in the conjugated form. In animals, daunomycin–antibody conjugates were at least as effective chemotherapeutically as the corresponding free drugs and considerably less toxic. In some tumor systems, the daunomycin–antibody conjugates represented an improvement over the free drug. This improvement was restricted in some tumors to a particular injection route of the tumor and the treatment.  相似文献   

20.
Jin Q  Mitschang F  Agarwal S 《Biomacromolecules》2011,12(10):3684-3691
The synthesis of a photo-triggered biocompatible drug delivery system on the basis of coumarin-functionalized block copolymers is reported. The coumarin-functionalized block copolymers poly(ethylene oxide)-b-poly(n-butyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy]coumarin)) (PEO-b-P(BMA- co-CMA)) were synthesized via atom transfer radical polymerization (ATRP). The micelle-drug conjugates were made by covalent bonding of anticancer drug 5-fluorouracil (5-FU) to the coumarin under UV irradiation at wavelength >310 nm. These micelle-drug conjugates possessed spherical morphology with diameters of 70 nm from TEM images. In vitro drug release experiments showed the controlled release of anticancer drug 5-FU from the micelle-drug conjugates under UV irradiation (254 nm). These micelle-drug conjugates also showed excellent biocompatibility by the in vitro cytotoxicity experiments. The results suggest that these micelle-drug conjugates could be a promising candidate for the delivery of anticancer agents with low side effects on normal cells and excellent therapeutic efficacy to cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号