首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation by the NK and T cell surface receptor CD244 in mice and humans depends both on engagement at the cell surface by CD48 and intracellular interactions with SAP and EAT-2. Relevance to human disease by manipulating CD244 in mouse models is complicated by rodent CD2 also binding CD48. We distinguish between contributions of mouse CD244 and CD2 on engagement of CD48 in a mouse T cell hybridoma. CD2 and CD244 both contribute positively to the immune response as mutation of proline-rich motifs or tyrosine motifs in the tails of CD2 and CD244, respectively, result in a decrease in antigen-specific interleukin-2 production. Inhibitory effects of mouse CD244 are accounted for by competition with CD2 at the cell surface for CD48. In humans CD2 and CD244 are engaged separately at the cell surface but biochemical data suggest a potential conserved intracellular link between the two receptors through FYN kinase. We identify a novel signaling mechanism for CD244 through its potential to recruit phospholipase C-γ1 via the conserved phosphorylated tyrosine motif in the tail of the adaptor protein EAT-2, which we show is important for function.The CD2 family of cell surface receptors is differentially expressed on immune cells (1, 2) and is involved in regulating both innate and adaptive immunity (3). These receptors have related extracellular immunoglobulin superfamily domains and interact either homophilically or heterophilically within the CD2 family (1, 2). The CD2 family contains a subgroup of receptors termed the SLAM family that have a conserved tyrosine signaling motif in their cytoplasmic region TXYXX(I/V) referred to as an immunoreceptor tyrosine-based switch motif (ITSM).2 The SLAM family of receptors include CD244 (2B4), NTB-A (Ly-108), CD319 (CRACC, CS-1), CD150 (SLAM), CD84, and CD229 (Ly-9). Defects in signaling and aberrant expression of these receptors have been implicated in several immunodeficiency and autoimmune disorders in humans and mice (48). Within the SLAM family, CD244 is unusual in that it shares its ligand CD48 with the receptor CD2 in rodents, whereas in humans CD2 has evolved to interact with CD58 (9). The affinity of CD244 for CD48 in rodents is 6–9-fold higher than the still functionally relevant CD2/CD48 interaction (10). CD244 and CD2 have different cytoplasmic regions comprised of tyrosine motifs or proline-rich motifs, respectively.CD244 is predominantly found on NK cells and cytotoxic T cells and primarily characterized as an activating receptor (1115). CD2 is found on the same cells as CD244 but is also expressed on all T cells, both activated and resting, and has an activating or costimulatory function upon engagement of ligand (9). The tyrosine motifs found in the cytoplasmic tail of CD244 have been shown to bind the SH2 domains of cytoplasmic adaptor proteins SAP and EAT-2 and FYN kinase (1618) and are important to its function (5, 1921). In contrast to SH2 interactions of CD244, several SH3 domain-mediated interactions have been reported for the cytoplasmic region of CD2 including CD2AP/CMS, CIN85, FYN, and LCK (2226).The activating function of CD244 was called into question when a study using cells from a CD244 knock-out mouse showed that CD244 had an inhibitory effect as loss of CD244 resulted in enhanced NK killing of target cells (27). This suggested that previous results in mice where positive effects were seen may have been due to blocking CD244 ligand engagement as opposed to cross-linking with antibodies against CD244 (27). This has led to proposals that there are differences in function between mouse and human CD244 as there is more evidence to suggest that human CD244 is a positive regulator enhancing cytotoxicity and cytokine production (13, 15, 28). However, other more recent studies have shown the mouse CD244/CD48 interaction to be important for cytokine production and effector functions such as cytotoxicity against tumor targets in CD244-deficient mice (29). Long and short forms of CD244 have been cloned from mice with the short form being described as activating and the long form inhibitory (27, 30). Only the long form of CD244 is present in humans and is regarded as activating (14).Positive signaling by CD244 has been attributed to the recruitment of SAP (18), which is a signaling adaptor molecule comprised of a single SH2 domain encoded by the SH2D1A gene and has the ability to recruit the kinase FYN by binding its SH3 domain (31, 32). Loss of the SAP/FYN interaction can lead to X-linked lymphoproliferative disease in humans (17). The molecular basis of in vitro inhibitory effects observed with CD244 in mice on ligation with mAb or ligand remains elusive (33). Protein tyrosine and inositol phosphatases have been reported to associate with CD244 (18, 19, 34) but our studies using surface plasmon resonance found them to be very weak and unlikely to bind competitively compared with the SAP family of adaptors or FYN (16). The SAP-related adaptor EAT-2 has been reported to have an active inhibitory effect that is dependent on tyrosine motifs in the tail of EAT-2 (35) but its mechanism is not understood. The only interaction reported for the tail of EAT-2 is with FYN kinase and studies overexpressing EAT-2 in a T cell hybridoma resulted in increased IL-2 production upon antigen stimulation (16).The conservation between mouse and human CD244 cytoplasmic regions and associated adaptors suggests that both function in a similar way. We have explored the main difference between mouse and human CD244, which is the extracellular interaction through CD48 ligation in the mouse. This has revealed that inhibitory effects of CD244 ligation in mice can be due to competition between CD244 and CD2 for CD48. We have also found that the adaptor protein EAT-2 binds PLCγ1 providing a molecular basis for the important role CD244 plays in regulating cellular cytotoxicity (13, 36). We demonstrate that there is a potentially shared signaling mechanism through the FYN kinase that links CD2 and CD244 intracellularly even though in humans CD2 and CD244 no longer share a cell surface ligand.  相似文献   

3.
4.
The vascular effects of nitrolinoleate (LNO2), an endogenous product of linoleic acid (LA) nitration by nitric oxide-derived species and a potential nitrosating agent, were investigated on rat endothelial-leukocyte interactions. Confocal microscopy analysis demonstrated that LNO2 was capable to deliver free radical nitric oxide (·NO) into cells, 5 min after its administration to cultured cells, with a peak of liberation at 30 min. THP-1 monocytes incubated with LNO2 for 5 min presented nitrosation of CD40, leading to its inactivation. Other anti-inflammatory actions of LNO2 were observed in vivo by intravital microscopy assays. LNO2 decreased the number of adhered leukocytes in postcapillary venules of the mesentery network. In addition to this, LNO2 reduced mRNA and protein expression of β2-integrin in circulating leukocytes, as well as VCAM-1 in endothelial cells isolated from postcapillary venules, confirming its antiadhesive effects on both cell types. Moreover, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, partially abolished the inhibitory action of LNO2 on leukocyte-endothelium interaction, suggesting that the antiadhesion effects of LNO2 involve a dual role in leukocyte adhesion, acting as a nitric oxide donor as well as through nitric oxide-independent mechanisms. In conclusion, LNO2 inhibited adhesion molecules expression and promoted ·NO inactivation of the CD40–CD40L system, both important processes of the inflammatory response.  相似文献   

5.
It is thought that cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin (HPβCD), will at high concentration affect pharmacokinetics of drugs through competitive binding with plasma proteins. Albumin is the major component of plasma proteins responsible for plasma protein binding. The purpose of this study was to evaluate in vitro the competitive binding of drugs between human serum albumin (HSA) and HPβCD in isotonic pH 7.4 phosphate buffer saline solution (PBS) at ambient temperature. Eight model drugs were selected based on their physicochemical properties and ability to form complexes with HSA and HPβCD. The drug/HPβCD stability constants (K 1:1) were determined by the phase-solubility method and HSA/HPβCD competitive binding determined by an equilibrium dialysis method. Protein binding of drugs that are both strongly protein bound and have high affinity to HPβCD (i.e., have high K 1:1 value) is most likely to be affected by parenterally administered HPβCD. However, this in vitro study indicates that even for those drugs single parenteral dose of HPβCD has to be as high as 70 g to have detectable effect on their protein binding. Weakly protein bound drugs and drugs with low affinity towards HPβCD are insensitive to the cyclodextrin presence regardless their lipophilic properties.  相似文献   

6.
We previously reported the emerging role of CD137–CD137L interaction in inflammation and atherosclerosis. The mechanism of CD137–CD137L interaction may be related to a variety of signaling pathways. The most important signaling pathway involves the activation of phospholipase C(PLC) which induces the diacylglycerol–protein kinase C(DAG–PKC) and the inositol trisphosphate-intracellular free calcium (IP3-[Ca2+]i) pathway. In the current study, we investigated whether CD137–CD137L interaction can stimulate the PLC signaling pathway in human umbilical vein endothelial cells (HUVEC). The diacylglycerol (DAG) and inositol trisphosphate (IP3) levels in HUVEC were measured by radioenzymatic assay. The activity of protein kinase (PKC) was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. The [Ca2+]i concentrations were measured by flow cytometric analysis. The DAG level and PKC activity were increased in a concentration-dependent, biphasic manner in HUVEC induced by anti-CD137. PKC activity was mainly in the cytosol at rest, and then translocated to the membrane when stimulated by anti-CD137. Similarly, rapid IP3 formation induced by anti-CD137 coincided with the peak of the DAG level. Moreover, anti-CD137 induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. However, anti-CD137L suppressed the activation of the DAG–PKC and IP3-[Ca2+]i signaling pathway, which was stimulated by anti-CD137 in HUVEC. In conclusion, the data suggested that CD137–CD137L interaction induces robust activation of the PLC signaling pathway in HUVEC.  相似文献   

7.
Regulatory T cells (Tregs) are central for maintaining immune balance and their dysfunction drives the expansion of critical immunologic disorders. During the past decade, microRNAs (miRNAs) have emerged as potent regulators of gene expression among which immune-related genes and their immunomodulatory properties have been associated with different immune-based diseases. The miRNA signature of human peripheral blood (PB) CD8+CD25 +CD127 low Tregs has not been described yet. We thus identified, using TaqMan low-density array (TLDA) technique followed by individual quantitative real-time polymerase chain reaction (qRT-PCR) confirmation, 14 miRNAs, among which 12 were downregulated whereas two were upregulated in CD8 +CD25 +CD127 low Tregs in comparison to CD8 +CD25 T cells. In the next step, microRNA Data Integration Portal (mirDIP) was used to identify potential miRNA target sites in the 3′-untranslated region (3′-UTR) of key Treg cell-immunomodulatory genes with a special focus on interleukin 10 (IL-10) and transforming growth factor β (TGF-β). Having identified potential miR target sites in the 3′-UTR of IL-10 (miR-27b-3p and miR-340-5p) and TGF-β (miR-330-3p), we showed through transfection and transduction assays that the overexpression of two underexpressed miRNAs, miR-27b-3p and miR-340-5p, downregulated IL-10 expression upon targeting its 3′-UTR. Similarly, overexpression of miR-330-3p negatively regulated TGF-β expression. These results highlighted an important impact of the CD8 + Treg mirnome on the expression of genes with significant implication on immunosuppression. These observations could help in better understanding the mechanism(s) orchestrating Treg immunosuppressive function toward unraveling new targets for treating autoimmune pathologies and cancer.  相似文献   

8.
Cruz F  Bradley DG  Lynn DJ 《Immunogenetics》2007,59(3):225-232
Atlantic salmon are typically anadromous, spending the majority of their lifetime in oceans and returning to fresh water to breed. This diversity of environments likely results in strong selective forces shaping their genome. In this paper, we present the first genomics approach to detect positive selection operating on the Salmo salar (salmon) lineage, an important aquaculture species. We identify a panel of candidate genes that may have been subject to adaptive evolution in this species. In particular, we identify a robust signature of positive selection operating on the salmon CD3γδ gene, which encodes one of the protein chains essential for formation of the T-cell receptor complex and for T-cell activation. Furthermore, we identified the particular codon sites that have been subject to positive selection in fish and highlight two sites flanking an important N-glycosylation site in this molecule. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
Vitamins are evaluated for their role in immunity. Recently, vitamin A received a particular attention as a critical micronutrient for regulating immune system. Therefore, the present study aimed to search for new about vitamin A. Forty-eight Egyptian adults aged from 18 to 42?years old from both sexes were subjected to clinical examination and nutrition questionnaire and were screened for vitamin A by using ELISA method. Forty subjects were selected and subdivided into two groups. Group 1 with vitamin A at level >200?µg/dl consists of 10 healthy subjects. Group 2 with vitamin A deficiency at level <50?µg/dl consists of 30 subjects. Tβ4 and CD4 levels were also determined by a commercial ELISA kit. Results showed a significant decrease in serum levels of Tβ4 and CD4 in group 2 than group 1 at P < .003 and P < .019 respectively. Both of Tβ4 and CD4 had positive correlation with vitamin A level at P < .000 and P < .003 respectively as well as with each other at p < .000. We concluded that vitamin A deficiency may be influence the levels of Tβ4 and CD4.  相似文献   

10.
11.
It has recently been reported that the CD40-CD40 ligand (CD40L) interaction is important in Th17 development. In addition, transforming growth factor—beta (TGF-β) promotes tumorigenesis as an immunosuppressive cytokine and is crucial in the development of Th17 cells. This study investigated the role of CD40 in breast cancer cells and its role in immunosuppressive function and tumor progression. CD40 was highly expressed in the breast cancer cell line MDA-MB231, and its stimulation with CD40 antibodies caused the up-regulation of TGF-β. Direct CD40-CD40L interaction between MDA-MB231 cells and activated T cells also increased TGF-β production and induced the production of IL-17, which accelerated the proliferation of MDA-MB231 cells through the activation of STAT3. Taken together, the direct CD40-CD40L interaction of breast tumor cells and activated T cells increases TGF-β production and the differentiation of Th17 cells, which promotes the proliferation of breast cancer cells.  相似文献   

12.
CD4和CD8分子     
  相似文献   

13.

Background

High content immune profiling in peripheral blood may reflect immune aberrations associated with inflammation in multiple sclerosis (MS) and other autoimmune diseases affecting the central nervous system.

Methods and Findings

Peripheral blood mononuclear cells from 46 patients with multiple sclerosis (MS), 9 patients diagnosed with relapsing remitting MS (RRMS), 13 with secondary progressive multiple sclerosis (SPMS), 9 with other neurological diseases (OND) and well as 15 healthy donors (HD) were analyzed by 12 color flow cytometry (TCRαβ, TCRγδ, CD4, CD8α, CD8β, CD45RA, CCR7, CD27, CD28, CD107a, CD127, CD14) in a cross-sectional study to identify variables significantly different between controls (HD) and patients (OND, RRMS, SPMS). We analyzed 187 individual immune cell subsets (percentages) and the density of the IL-7 receptor alpha chain (CD127) on 59 individual immune phenotypes using a monoclonal anti-IL-7R antibody (clone R34.34) coupled to a single APC molecule in combination with an APC-bead array. A non-parametric analysis of variance (Kruskal-Wallis test) was conducted in order to test for differences among the groups in each of the variables. To correct for the multiplicity problem, the FDR correction was applied on the p-values. We identified 19 variables for immune cell subsets (percentages) which allowed to segregate healthy individuals and individuals with CNS disorders. We did not observe differences in the relative percentage of IL-7R-positive immune cells in PBMCs. In contrast, we identified significant differences in IL-7 density, measured on a single cell level, in 2/59 variables: increased numbers of CD127 molecules on TCRαβ+CD4+CD25 (intermed) T-cells and on TCRαβ+CD4+CD25−CD107a+ T-cells (mean: 28376 Il-7R binding sites on cells from HD, 48515 in patients with RRMS, 38195 in patients with SPMS and 33692 IL-7 receptor binding sites on cells from patients with OND).

Conclusion

These data show that immunophenotyping represents a powerful tool to differentiate healthy individuals from individuals suffering from neurological diseases and that the number of IL-7 receptor molecules on differentiated TCRαβ+CD4+CD25−CD107a+ T-cells, but not the percentage of IL-7R-positive cells, segregates healthy individuals from patients with neurological disorders.  相似文献   

14.
α-Galactosylceramide (α-GalCer) is recognized by the CD1d proteins on antigen-presenting cells at the ceramide moiety and the galactose moiety is presented to iNKT cells, which stimulates the immune responses. However, the immune suppression by repeated injections of α-GalCer has discouraged its development as an anti-cancer agent. To overcome the shortcoming by spatiotemporal restriction of its exposure, we synthesized the photochromic azobenzene-incorporated analogues and tested the photo-immunoregulation effect in its binding to CD1d. FACS analyses indicated that some of these analogues enhanced the affinity to CD1d on photo-irradiation by about 20%. A docking simulation suggests that the photochromic molecule should be bulkier for a clearer discrimination between on and off states.  相似文献   

15.
16.
We investigated the influence of acute and chronic endurance exercise on levels of intracellular nitric oxide (NO), superoxide (O?·?), and expression of genes regulating the balance between these free radicals in CD34? and CD34? peripheral blood mononuclear cells (PBMCs; isolated by immunomagnetic cell separation). Blood samples were obtained from age- and body mass index (BMI)-matched endurance-trained (n = 10) and sedentary (n = 10) men before and after 30 min of exercise at 75% maximal oxygen uptake (·VO(?max)). Baseline levels of intracellular NO (measured by DAF-FM diacetate) and O?·? (measured by dihydroethidium) were 26% (P < 0.05) and 10% (P < 0.05) higher, respectively, in CD34? PBMCs from the sedentary group compared with the endurance-trained group. CD34? PBMCs from the sedentary group at baseline had twofold greater inducible nitric oxide synthase (iNOS) mRNA and 50% lower endothelial NOS (eNOS) mRNA levels compared with the trained group (P < 0.05). The baseline group difference in O?·? was eliminated by acute exercise. Experiments with apocynin indicated that the training-related difference in O?·? levels was explained by increased NADPH oxidase activity in the sedentary state. mRNA levels of additional angiogenic and antioxidant genes were consistent with a more angiogenic profile in CD34? cells of trained subjects. CD34? PBMCs, examined for exploratory purposes, also displayed a more angiogenic mRNA profile in trained subjects, with vascular endothelial growth factor (VEGF) and eNOS being more highly expressed in trained subjects. Overall, our data suggest an association between the sedentary state and increased nitro-oxidative stress in CD34? cells.  相似文献   

17.
18.
CD46 acts as a cellular receptor for vaccine strains of measles virus (MV). The MV/CD46 interaction-mediated by the MV attachment glycoprotein, the hemagglutinin (H)-not only facilitates infection but also induces CD46 downregulation. A conflict of opinion exists as to whether a single MVH binding site on CD46, or two separate sites, facilitates the two phenomena. To investigate this conundrum we first tested and compared a panel of CD46-specific monoclonal antibodies (mAbs) for their capacity to block both processes. One (mAb 13/42) abrogated both MV fusion and CD46 downregulation. Mutation of an amino acid (arg59 in the SCR1 of CD46) essential for the epitope of mAb 13/42 resulted in the abrogation of both CD46 downregulation and viral fusion. This strongly suggests that the same MV binding site on CD46 is responsible for both CD46 downregulation and MV infection.  相似文献   

19.
Whether or not CD4+ T-cells express low affinity receptor FcγRIIIa (CD16a) in disease pathology has not been examined in great detail. In this study, we show that a subset of activated CD4+ T-cells in humans express FcγRIIIa. The ligation of FcγRIIIa by immune complexes (ICs) in human CD4+ T-cells produced co-stimulatory signal like CD28 that triggered IFN-γ production. The induced expression of FcγRIIIa on CD4+ helper T-cells is an important finding since these receptors via ITAM contribute to intracellular signaling. The induced expression of FcγRIIIa on CD4+ T helper cells and their ability to co-stimulate T-cell activation are important and novel findings that may reveal new pathways to regulate adaptive immune responses during inflammation and in autoimmunity.  相似文献   

20.
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor immunobiology, a simple mathematical model was formulated and studied. This model is an extension of a previous model for the dynamics of autoreactive regulatory cells and effector cells that interact upon their co-localized activation at the antigen presenting cells (APCs). It assumes that tumor growth stimulates the activation and migration to the adjacent lymph node of fresh APCs loaded with tumor antigens. These APCs stimulate the growth of both effector and regulatory T cells, which may then migrate to the tumor site and induce tumor cell destruction. Our results predict the existence of two alternative dynamic modes of unbounded tumor growth. In the first mode, the tumor induces the expansion of effector T cells that outcompete regulatory T cells, but nevertheless fail to control the tumor. In the second mode, the tumor induces a balanced expansion of both effector and regulatory T cells, which prevents the tumor from being destroyed by the immune cells. Tumors characterized by a high specific growth rate, low immunogenicity, and that are relatively resistant to T cell destructive functions, will grow in the first mode; conversely, tumors that have a slow specific growth rate, that are immunogenic, and/or that are more sensitive to destruction by T cells will grow in the second mode. Overall, this result provides a simple explanation to the fact that the development of some tumors expands regulatory T cells while others do not, predicting how some key dynamical properties of the tumor determine either one or the other type of behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号