首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The object of the study was to compare the capability of glibenclamide to block the effects of K+-ATP channel activators on action potential duration and steady state whole cell current to its efficiency in counteracting the effects of hypoxia or metabolic poisons in the presence of glycolytic substrate. The modulation of action potential duration by 30 M glibenclamide was tested in perfused hearts subjected to hypoxia or to the K+-ATP channel opener pinacidil. Similar protocols were used to study the modifications of the steady state whole cell current in isolated ventricular myocytes. It was found that glibenclamide did not prevent early action potential shortening induced by hypoxia but produced a partial recovery after 15 min of exposure. At the steady state the action potential duration had lengthened by 53±6% at plateau level and 42±3% at 95% repolarization. In contrast, action potential shortening induced by 100 M pinacidil was fully reversed by glibenclamide within 2 min. Freshly dispersed ventricular myocytes were characterized in control conditions as for the properties of the steady state current. This current, measured at the end of 450 ms long pulses showed typical inward rectification that was abolished by 50 M Ba2+. Cyanide (2 mM), carbonyl-cyanide m-chlorophenylhydrazone (CCCP, 200 nM) and BRL 38227 (30 M) produced characteristic increases in time independent outward currents. Glibenclamide abolished the outward current induced by BRL 38227 and the concomitant action potential shortening. Addition of cyanide in the presence of glibenclamide and BRL 38227 produced a new increase in outward current accompanied by action potential shortening. In the absence of K+-ATP channel activators, glibenclamide partly inhibited the CCCP induced current. Our data suggested that the delayed onset of glibenclamide action in hypoxic hearts is not due to diffusion barriers. They rather support the view that mechanisms other than K+-ATP channel activation could determine the early action potential shortening in whole hearts. The partial recovery observed under glibenclamide may be due, in part, to channel desensitization but also reflect the contribution of more than one current system to the action potential shortening because the glibenclamide insensitive fraction of the CCCP induced current is partly blocked by low concentrations of Ba2+. Differences with other data in the literature are attributed to the degree to metabolic blockade, to species differences, and to the inherent heterogeneities of the whole heart model where non-muscle cells may modulate the response to hypoxia.  相似文献   

2.
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.  相似文献   

3.
Hypoxia-induced shortening of the action potential duration, attributed to activation of the ATP-sensitive potassium (KATP) channels, occurs to a much greater extent in ventricular cells from diabetic rats. This study examined whether the KATP channels are altered in streptozotocin-diabetic myocardium. In inside-out patches from ventricular myocytes (with symmetrical 140 mM [K+]), inward KATP currents (at potentials negative to the K+ reversal potential) were similar in amplitude in control and diabetic patches (slope conductances: 69 and 74 pS, respectively). However, outward single-channel currents were larger for channels from diabetic heart cells than from control cells (e.g., at +75 mV the diabetic channel currents were 3.7 ± 0.3 pA vs. 2.7 ± 0.1 pA for control currents, p < 0.05), due to reduced inward rectification of diabetic channel currents. There was no difference in open and closed times between control and diabetic channels. The IC50 for ATP inhibition of the KATP channel single-channel currents was 11.4 M for control currents and 4.7 M for diabetic channel currents. Thus, the major difference found between KATP channels from control and diabetic hearts was the greater outward diabetic single-channel current, which may contribute to the enhanced sensitivity to hypoxia (or ischemia) in diabetic hearts.  相似文献   

4.
The inside-out configuration of the patch-clamp technique was used to study the effect of glibenclamide on the ATP-sensitive K+ channel current in isolated guinea-pig ventricular myocytes. The inhibitory effect of glibenclamide was tested in the bath solution containing two different concentrations of ATP (100 M and 200 M). It was found that the effect of the drug on the KATP current was stronger in the presence of the higher concentration of ATP. The blocking effect of glibenclamide on the channels was weaker if, in addition to ATP, ADP was applied in the intracellular solution. Similarly, the inhibitory effect of the drug was not pronounced for the channels reactivated by ADP after run-down. As application of the drug in the presence and absence of Mg2+ did not show different effects on the channel inhibition, we concluded that the effect of glibenclamide may not depend on the phosphorylation of the channel protein. These results suggest that in addition of the previously described effect of ADP, ATP also has some modulatory effect on inhibition of the KATP channel by glibenclamide.  相似文献   

5.
Arachidonic acid has been shown to activate K+-selective, mechanosensitive ion channels in cardiac, neuronal and smooth muscle cells. Since the cardiac G protein (G K )-gated, muscarinic K+ (KACh) channel can also be activated by arachidonic acid, we investigated whether the KACh channel was also sensitive to membrane stretch. In the absence of acetylcholine (ACh), KACh channels were not active, and negative pressure failed to activate these channels. With ACh (10 m) in the pipette, applying negative pressure (0 to –80 mm Hg) to the membrane caused a reversible, pressure-dependent increase in channel activity in cell-attached and inside-out patches (100 m GTP in bath). Membrane stretch did not alter the sensitivity of the KACh channel to GTP. When G K was maximally activated with 100 m GTPS in inside-out patches, the KACh channel activity could be further increased by negative pressure. Trypsin (0.5 mg/ ml) applied to the membrane caused activation of the KACh channel in the absence of ACh and GTP; KACh channel activity was further increased by stretch. These results indicate that the atrial muscarinic K+ channels are modulated by stretch independently of receptor/G protein, probably via a direct effect on the channel protein/ lipid bilayer.  相似文献   

6.
We describe the activation of a K+ current and inhibition of a Cl current by a cyanoguanidine activator of ATP-sensitive K+ channels (KATP) in the smooth muscle cell line A10. The efficacy of U83757, an analogue of pinacidil, as an activator of KATP was confirmed in single channel experiments on isolated ventricular myocytes. The effects of U83757 were examined in the clonal smooth muscle cell line A10 using voltage-sensitive dyes and digital fluorescent imaging techniques. Exposure of A10 cells to U83757 (10 nm to 1 m) produced a rapid membrane hyperpolarization as monitored by the membrane potential-sensitive dye bis-oxonol ([diBAC4(3)], 5 m). The U83757induced hyperpolarization was antagonized by glyburide and tetrapropylammonium (TPrA) but not by tetraethlylammonium (TEA) or charybdotoxin (ChTX). The molecular basis of the observed hyperpolarization was studied in whole-cell, voltage-clamp experiments. Exposure of voltage-clamped cells to U83757 (300 nm to 300 m) produced a hyperpolarizing shift in the zero current potential; however, the hyperpolarizing shift in reversal potential was associated with either an increase or decrease in membrane conductance. In solutions where E k=–82 mV and E Cl=0 mV, the reversal potential of the U83757-sensitive current was approximately –70 mV in those experiments where an increase in membrane conductance was observed. In experiments in which a decrease in conductance was observed, the reversal potential of the U83757-sensitive current was approximately 0 mV, suggesting that U83757 might be acting as a Cl channel blocker as well as a K+ channel opener. In experiments in which Cl current activation was specifically brought about by cellular swelling and performed in solutions where Cl was the major permeant ion, U83757 (300 nm to 300 m) produced a dose-dependent current inhibition. Taken together these results (i) demonstrate the presence of a K+-selective current which is sensitive to KATP channel openers in A10 cells and (ii) indicate that the hyperpolarizing effects of K+ channel openers in vascular smooth muscle may be due to both the inhibition of Cl currents as well as the activation of a K+-selective current.This work was supported in part by the following grants: PHS P01 DK44840 and GM36823 (D.J.N.). J.C.M. is an Established Investigator of the American Heart Association.  相似文献   

7.
Summary Isolated heart ventricular preparations from rainbow trout were electrically stimulated to contraction. Following a temporary change in stimulation rate from 0.2 Hz to a higher value, the force fell to a minimum after which it increased and levelled off. Upon the return to 0.2 Hz a further transient increase in force appeared. The latter two responses were stimulated by an increased extracellular K+, which is known to inactivate the Na+ channel. The initial negative inotropic effect, in contrast to the two subsequent positive effects, was associated with a parallel decrease in amplitude of the action potential measured in 15 mM K+, used as an index of the Ca2+ influx. One micromolar (1 M) ryanodine did not affect either the negative or the positive responses due to an increase in stimulation rate, but depressed the force developed after prolonged periods of rest. Ten micromolar (10 M) adrenaline strongly inhibited the positive effects of an elevation of frequency. An elevation of extracellular Na+ from 141 to 166 mM had a similar effect. In conclusion, the positive effects occurring in 15 mM K+ do not seem to depend on the initial Na+ current. They may nevertheless depend on changes of the cellular Na+ balance as suggested by the effects of adrenaline, K+ and Na+. The functional role of the sarcoplasmic reticulum is unclear.  相似文献   

8.
The aim of this work was to investigate the role of the inward rectifying (K1) and the sarcolemmal ATP-sensitive K+ (K-ATP) channels in the electrical response to regional ischemia and the subsequent development of ventricular tachyarrhythmias on reflow (RA). Surface electrograms (ECG) and the transmembrane potential from subepicardial left ventricular cells were recorded in spontaneously beating rat hearts perfused with buffer alone (controls) or exposed to 100 M BaCl2 or 100 M 5-hydroxydecanoate (5-HD) to block either K1 or K-ATP channels respectively. After 20 min of equilibration and 10 min of control recordings, the left anterior descending coronary artery was occluded for 10 min. This was followed by reperfusion. The effects of regional ischemia as well as those of reperfusion (10 min) were recorded throughout. In the three groups, ischemia induced a modest decrease in heart rate and a sharp reduction in resting potential within 3 min. The latter as well as the accompanying depression of propagated electrical activity were enhanced by Ba2+. A partial recovery of the resting potential was observed in all groups during the last 2 min of coronary occlusion. Concomitantly, a slight reduction in the action potential duration was found in the control hearts. This effect was blocked by 5-HD. Under Barium the action potential duration increased by a factor of 3 and its ischemic variations were minimized. Severe sustained ventricular tachyarrhythmias developed on reflow in the controls and in the 5-HD exposed hearts. Barium limited the duration of arrhythmic episodes to a few seconds. Our data indicate that the initial electrical effects of ischemia are unrelated to activation of ATP sensitive K+ channels and that gK1 dominates the K+ membrane conductance at this stage. Furthermore, they show that action potential lengthening limits the duration of arrhythmic episodes triggered by reperfusion. This suggests that electrical heterogeneity plays an important role in the perpetuation of reperfusion arrhythmias.  相似文献   

9.
KATP channel openers have been shown to protect ischemic-reperfused myocardium by mimicking ischemic preconditioning, although their mechanisms of action have not been fully clarified. In this study we investigated the influence of the adenine nucleotide translocase (ANT) inhibitors–carboxyatractyloside (CAT) and bongkrekic acid (BA)–on the diazoxide- and pinacidil-induced uncoupling of isolated rat heart mitochondria respiring on pyruvate and malate (6 + 6 mM). We found that both CAT (1.3 M) and BA (20 M) markedly reduced the uncoupling of mitochondrial oxidative phosphorylation induced by the KATP channel openers. Thus, the uncoupling effect of diazoxide and pinacidil is evident only when ANT is not fixed by inhibitors in neither the C- nor the M-conformation. Moreover, the uncoupling effect of diazoxide and pinacidil was diminished in the presence of ADP or ATP, indicating a competition of KATP channel openers with adenine nucleotides. CAT also abolished K+-dependent mitochondrial respiratory changes. Thus ANT could also be involved in the regulation of KATP-channel-openers-induced K+ flux through the inner mitochondrial membrane.  相似文献   

10.
Summary Arecaidine propargyl ester (APE) was developed as a potential candidate compound for the treatment of Alzheimer’s disease. APE has been shown to have cardiovascular effects. APE produces negative chronotropic and inotropic effects in isolated atria. However, the ionic mechanisms underlying the cardiovascular effects of APE in guinea-pig atria are unclear. The aims of this study were: (1) to examine the shortening effect of APE on action potential duration (APD) and to compare the difference in potency between APE and muscarine in isolated single guinea-pig atrial myocytes by using the current clamp method, (2) to examine by using patch clamp techniques the ionic mechanisms underlying the cardiac effects of APE, and (3) to determine whether the cardiac effects caused by APE affect the usefulness of APE as a potential candidate for the treatment of Alzheimer’s disease. The APE significantly reduced the APD in guinea-pig atria and produced no direct effect on ventricular myocytes. APE is approximately 20 times as potent as muscarine in shortening the APD. Attenuation of the APD was consistently accompanied by a hyperpolarization of the resting membrane potential in a concentration-dependent manner. The APE activated muscarinic K+ channels and increased potassium conductance in guinea-pig atrial myocytes. In the cell-attached configuration, the APE contained in the pipette increased the channel-opening probability and decreased the closed-state time interval. The proposal that APE can be used as a potential remedy for the treatment of Alzheimer’s disease should be taken into consideration the undesirable cardiovascular side effects that APE causes at lower concentrations.  相似文献   

11.
Morphine produces a multiphasic modulation of K+-evoked substance P release from trigeminal slices and dorsal root ganglion neurons in culture. We now found that the C-fiber stimulant, capsaicin (1 M), evoked release of substance P that was inhibited, enhanced and inhibited by 0.1 nM, 1 M, and 10 M morphine, respectively. This morphine's multiphasic effect was blocked by naloxone (100 nM). Neonatal treatment with capsaicin produced thermal hypoalgesia and abolished the multiphasic effect of morphine on substance P release evoked by 50 mM K+. These findings suggest that the multiphasic modulation of substance P release by morphine is dependent on C-type afferents and may be of relevance to nociception.  相似文献   

12.
M2-cholinergic receptor activation by acetylcholine (ACh) is known to cause a negative inotropic and chronotropic action in atrial tissues. This effect is still controversial in ventricular tissues. The ACh-sensitive muscarinic K+ channel (I K(ACh)) activity was characterized in isolated feline atrial and ventricular myocytes using the patch-clamp technique. Bath application of ACh (1 m) caused shortening of action potential duration without prior stimulation with catecholamines in atrial and ventricular myocytes. Resting membrane potential was slightly hyperpolarized in both tissues. These effects of ACh were greater in atrium than in ventricle. ACh increased whole-cell membrane current in atrial and ventricular myocytes. The current-voltage (I-V) relationship of the ACh-induced current in ventricle exhibited inward-rectification whose slope conductance was smaller than that in atrium. In single channel recording from cell-attached patches, I K(ACh) activity was observed when ACh was induced in the pipette solution in both tissues. The channel exhibited a slope conductance of 47 ±1 pS (mean ± sd, n=14) in atrium and 47 ±2 pS (n= 10) in ventricle (not different statistically; ns). The open times were distributed according to a single exponential function with mean open lifetime of 2.0±0.3 msec (n= 14) in atrium and 1.9±0.3 msec (n=10) in ventricle (ns); these conductance and kinetic properties were similar between the two tissues. However, the relationship between the concentration of ACh and single channel activity showed a higher sensitivity to ACh in atrium (IC 50 =0.03 m) than in ventricle (IC 50 =0.15 m). In excised inside-out patches, ventricular I K(ACh) required higher concentrations of GTP to activate the channel compared to atrial channels. These results suggest a reduced I K(ACh) channel sensitivity to M2-cholinergic receptor-linked G protein (Gi) in ventricle compared to atrium in feline heart.  相似文献   

13.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

14.
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mol·l-1) and thyroxine (1 mol·l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6–7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77±11 A·cm-2) compared to control (24±8 A·cm-2). K+ currents across the basolateral membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26·106·cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.Abbreviations f frequency - f c Lorentzian corner frequency - g K single K+ channel conductance - HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid - i K single K+ channel current - IAmpho amphotericin B induced K+ current - I sc short-circuit current - I K quinidine blockable K+ current - I max maximally blocked current by quinidine - IC 50 half-maximal blocker concentration - k on, k off on- and off-rate coefficients of reversible single channel block by quinidine - M K number of conducting K+ channels - [Q] quinidine concentration - R t transepithelial resistance - S spectral density - S o Lorentzian plateau - TBM cells toad urinary bladder cell line Present address: University of California at Berkeley, Dept. of Molecular and Cell Biology Berkeley, CA 94720, USA  相似文献   

15.
Techniques routinely utilized in this laboratory for recording currents through single ionic channels of isolated atrial and ventricular rat cardiomyocytes are described. Emphasis is placed in two main areas: first, on methods for obtaining a sufficient yield of Ca++-tolerant myocytes suitable for patch clamp experiments, and secondly, on methods for analyzing the temporal characteristics of patched ionic channels. These methods were used on acetylcholine activated K+ channels in isolated atrial myocytes and on an inwardly-rectifying K+ channel in ventricular myocytes. The latter is an example of a hormonally modulated K+ channel, since its activity could be substantially increased by norepinephrine. Analysis of the closed and open time distributions suggested that one of the closed states of this channel is markedly abbreviated by norepinephrine, whereas the open state is nearly unaffected. Norepinephrine was effective when channel activity was recorded from on-cell patches and the hormone was added to the solution bathing the cell membrane outside of the patched area. This indicates that a second messenger substance is probably mediating the action of norepinephrine.  相似文献   

16.
Elementary K+ currents were recorded at 19 °C in cell-attached and in inside-out patches excised from neonatal rat heart myocytes. An outwardly rectifying K+ channel which prevented Na+ ions from permeating could be detected in about 10% of the patches attaining (at 5 mmol/l external K+ and between – 20 mV and + 20 mV) a unitary conductance of 66 +- 3.9 pS. K (outw.-rect.) + channels have one open and at least two closed states. Open probability and open rose steeply on shifting the membrane potential in the positive direction, thereby tending to saturate. Open probability (at –7 mV) was as low as 3 ± 1% but increased several-fold on exposing the cytoplasmic surface to Mg-ATP (100 mol/l) without a concomitant change of open. No channel activation occurred in response to ATP in the absence of cytoplasmic Mg–+. The cytoplasmic administration of the catalytic subunit of protein kinase A (120–150 /ml) or GTP--S (100 mol/l) caused a similar channel activation. GDP--S (100 mol/l) was also tested and found to be ineffective in this respect. This suggests that cardiac K (outw.-rect.) + channels are metabolically modulated by both cAMP-dependent phosphorylation and a G-protein. Offprint requests to: M. Kohlhardt  相似文献   

17.
Summary The addition of agents that uncouple electron transfer from energy conservation (uncouplers) to state 4 mitochondria causes the following ion movements: K+ is extruded from the mitochondria in association with phosphate and possibly other anions, but not H+. Endogenous Ca++ is extruded from the mitochondria, and H+ moves in to counter-balance the Ca++ movement; some phosphate movement may be associated with Ca++ extrusion. The rate and extent of K+ extrusion induced by uncoupler is dependent on the concentrations of external phosphate and divalent ions. Phosphate induces K+ extrusion, while Mg++ and Mn++ inhibit it. TheV max of K+ transport is 300 moles K+/g protein per min. The K m for FCCP-induced potassium extrusion is 0.25 M at pH 7.4. The inhibitory effect of Mg++ is noncompetitive with respect to uncoupler concentration but competitive with respect to phosphate concentration. The experimental evidence does not support the existence of high H+ permeability in the presence of uncoupler. A correlation is observed between the rate of K+ extrusion and the energy reserves supplied from the high energy intermediate. The action of uncoupler in inducing K+ permeability is considered to arise through its action in depleting the energy reserves of mitochondria rather than through a specific activating effect of permeability by the uncoupler itself. The relationship of membrane potential to regulation of K+ permeability is discussed.  相似文献   

18.
We have investigated whether muscarinic receptors modulate the release of [3H]ACh elicited by secretagogues that act by different mechanisms in rat cerebral cortical synaptosomes. Oxotremorine (10 M) reduced the calcium-dependent [3H]ACh release induced by mild K+-depolarization (10 and 15 mM K+), but not that by higher K+ concentrations. The ACh-release induced by A23187 (0.2–5 g/ml), liposomes laden with 113 mM CaCl2, or 4-aminopyridine (1–10 mM) was not modulated by oxotremorine. Ouabain (100 M)-induced release of [3H]ACh was reduced by oxotremorine in normal but not calcium-free KR, indicating that extracellular calcium-uptake but not Na+, K+-ATPase activity may be necessary for release-modulation. With respect to possible second messenger systems, dibutyrylcyclic AMP (0.1–2 mM), dibutyrylcyclic GMP (0.1–2 mM), forskolin (100 M), and phorbol ester (0.3–3 g/ml) were without effect on release or release-modulation. These results are consistent with an involvement of K+-channels and voltage-sensitive calcium-channels in the muscarinic release-inhibition process. They argue against an involvement of Na+, K+-ATPase, adenylate cyclase, guanylate cyclase, and phosphatidylinositol turnover in the release-modulation process.  相似文献   

19.
Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, downregulation of Kv4.3 K+ channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca2+]i, activation of calcineurin and heart hypertrophy/heart failure. However, in canine and human, Kv4.3 K+ channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K+ channel/APD/[Ca2+]i pathway, there exits another mechanism of Kv4.3 K+ channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K+ channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII, which induces heart hypertrophy/heart failure. Upregulation of Kv4.3 K+ channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K+ channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K+ channel might be potentially harmful or beneficial to hearts through CaMKII.  相似文献   

20.
The effect of 8-isoprostanes on potassium (K+)-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae was investigated. Isolated bovine retinae were prepared for studies of K+-evoked release of [3H]D-aspartate using the Superfusion Method. Low concentrations of 8-isoPGF2(1–100 nM) inhibited whereas higher concentrations of this 8-isoprostane (100 nM–30 M) enhanced K+-induced [3H]D-aspartate overflow. The excitatory effect of 8-isoPGF2 was mimicked by thromboxane receptor agonist, U-46619 and blocked by thromboxane receptor antagonist, SQ 29,548 (10 M). Pretreatment of tissues with the cyclooxygenase (COX) inhibitor, flurbiprofen unmasked an inhibitory effect of high concentrations of 8-isoPGF2(1–30 M) on [3H]D-aspartate release that was attenuated by AH 6809 (10 M). In conclusion, 8-isoPGF2 exhibits a dual regulatory effect on K+-induced [3H]D-aspartate release in isolated bovine retinae. The inhibitory action caused by 8-isoPGF 2 is due to the activation of EP1/EP2 receptors while the excitatory effects are due to the activation of thromboxane receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号