共查询到20条相似文献,搜索用时 0 毫秒
1.
A system which consisted of multidimensional liquid chromatography (Yin-yang MDLC) coupled with mass spectrometry was used for the identification of peptides and phosphopeptides. The multidimensional liquid chromatography combines the strong-cation exchange (SCX), strong-anion exchange (SAX), and reverse-phase methods for the separation. Protein digests were first loaded on an SCX column. The flow-through peptides from SCX were collected and further loaded on an SAX column. Both columns were eluted by offline pH steps, and the collected fractions were identified by reverse-phase liquid chromatography tandem mass spectrometry. Comprehensive peptide identification was achieved by the Yin-yang MDLC-MS/MS for a 1 mg mouse liver. In total, 14 105 unique peptides were identified with high confidence, including 13 256 unmodified peptides and 849 phosphopeptides with 809 phosphorylated sites. The SCX and SAX in the Yin-Yang system displayed complementary features of binding and separation for peptides. When coupled with reverse-phase liquid chromatography mass spectrometry, the SAX-based method can detect more extremely acidic (pI < 4.0) and phosphorylated peptides, while the SCX-based method detects more relatively basic peptides (pI > 4.0). In total, 134 groups of phosphorylated peptide isoforms were obtained, with common peptide sequences but different phosphorylated states. This unbiased profiling of protein expression and phosphorylation provides a powerful approach to probe protein dynamics, without using any prefractionation and chemical derivation. 相似文献
2.
S A Berkowitz 《Analytical biochemistry》1987,164(1):254-260
Rapid preparative scale purification of calmodulin from crude bovine brain extract is achieved in a single chromatographic run by physically coupling two different liquid chromatography columns which employ different separation mechanisms. In this case columns packed with newly commercialized 40-microns silica-based hydrophobic interaction and 5-microns micron silica-based weak anion-exchange chromatography media were used. The only sample preparation required for conducting this purification procedure is the addition of salt to the crude brain supernatant to promote the initial binding of calmodulin to the hydrophobic interaction chromatography media. Chromatography carried out on such linear arrangements of columns has been referred to as linear multidimensional liquid chromatography. 相似文献
3.
Efficient recovery of recombinant proteins using membrane-based immunoaffinity chromatography (MIC) 总被引:1,自引:0,他引:1
A systematic approach to the design and development of membrane-based immunoaffinity systems for the purification of recombinant proteins is presented. The preparation and characterization of immunoaffinity membranes are described. The immunoaffinity purification process for recombinant interferon-alpha2a is used as a model system to determine the operational parameters in membrane-based immunoaffinity chromatography. The high volumetric throughput of membranes, combined with the typically fastbinding kinetics of antigen-antibody interactions, enable the purification of recombinant proteins from dilute feed stream in less time, using less antibody than conventional systems. Three recombinant proteins, human interferon-alpha2a, interleukin-2, and interleukin-2 receptor, have been purified efficiently employing membrane-based immunoaffinity chromatography. Overall, membrane-based immunoaffinity chromatography is shown to be a viable and scalable method, ideal for the industrial-scale production of recombinant proteins. (c) 1992 John Wiley & Sons, Inc. 相似文献
4.
Stroink T Ortiz MC Bult A Lingeman H de Jong GJ Underberg WJ 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2005,817(1):49-66
Peptides and proteins are gaining increasing attention in biosciences and, consequently, in analysis. This overview highlights the different approaches to couple on-line various separation techniques for the determination of proteins and peptides. The first section discusses the liquid chromatography (LC)-LC coupling, the second one reviews the on-line LC-capillary electrophoresis (CE) coupled systems and the third section summarizes the strategies for on-line CE-CE. The advantages, disadvantages, most relevant difficulties and particular systems for on-line coupling are discussed. Special attention is paid to the interface between the two dimensions. Applications are summarized in tables and a few typical examples are discussed. Many multidimensional separation methods are available, and it is demonstrated that peptide and protein mapping, or quantitation of proteins or peptides in various samples (aqueous solutions, cells, plasma) require different coupled systems. For mapping a semi-quantitative detection is often sufficient, while comprehensiveness is very important. For quantitation of a certain peptide or protein at a low concentration level a validated method should be used, while a heart-cut transport of the first dimension to the second one can offer sufficient selectivity. The combination with mass spectrometry as part of the total system is stressed and illustrated. 相似文献
5.
《Expert review of proteomics》2013,10(5):665-678
As a complementary approach to 2D-PAGE, multidimensional liquid chromatography (MDLC) separation methods have been widely applied in all kinds of biological sample investigations. MDLC coupled with mass spectrometry is playing an important role in proteome research owing to its high speed, high resolution and high sensitivity. Among MDLC strategies, ion-exchange chromatography together with reversed-phase LC is still a most widely used chromatography in proteome analysis; other chromatographic methods are also frequently used in protein prefractionations. Recent MDLC technologies and applications to a variety of proteome analyses have achieved great development. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as ultra-pressure system, array-based separation and monolithic material are also included in this article. 相似文献
6.
In this study, for the first time, a comprehensive two-dimensional (2D) liquid-phase separation system, coupling strong cation exchange chromatography (SCX) to reversed-phase high performance liquid chromatography (RPLC), instead of specificity depletion method, was developed at the intact protein level for depletion of high-abundance proteins from rat liver. Proteins were prefractionated by SCX in the first dimensional separation, followed by RPLC with high resolution separation. UV absorption intensity was used to differentiate high-abundance proteins. The proteins with the absorbance intensity above 0.1 AU were defined as high abundance proteins and depleted. After removal of high-abundance proteins; other proteins were pooled, digested, and subsequently separated by capillary liquid chromatography coupled with MALDI-TOF/TOF mass spectrometry analysis. The high efficiency of the strategy was demonstrated by analyzing the soluble protein extracted from rat liver tissue. In total, 77 high-abundance proteins were depleted in one experiment flow. The ratio of depleted content of high-abundance proteins to that of total proteins was about 34.5%. In total, 1530 proteins were identified using the depletion strategy. Quantitative estimation of high-abundance proteins through liquid chromatography combined with UV absorption spectra was achieved. On the basis of the reproducible experimental results, a rapid and high-throughput depletion protocol was put forward. Along with depletion of the most (79.1%) high-abundance proteins and the separation of digested peptides, the total separation time could be less than 30 h. This strategy has no bias for depleting high-abundance proteins and enhances the number of identified proteins; therefore, it can be widely used in the global proteins analysis. 相似文献
7.
As a complementary approach to 2D-PAGE, multidimensional liquid chromatography (MDLC) separation methods have been widely applied in all kinds of biological sample investigations. MDLC coupled with mass spectrometry is playing an important role in proteome research owing to its high speed, high resolution and high sensitivity. Among MDLC strategies, ion-exchange chromatography together with reversed-phase LC is still a most widely used chromatography in proteome analysis; other chromatographic methods are also frequently used in protein prefractionations. Recent MDLC technologies and applications to a variety of proteome analyses have achieved great development. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as ultra-pressure system, array-based separation and monolithic material are also included in this article. 相似文献
8.
The ability of two high-performance liquid chromatography gel permeation columns to separate proteins was evaluated. These columns gave satisfactory molecular weight separations for some, but not all, proteins tested. These results indicate that there are limitations in confidence of molecular weight determinations made by this technique. 相似文献
9.
We present here an improved RNA purification method using fast performance liquid chromatography (FPLC) size-exclusion chromatography in place of denaturing polyacrylamide gel electrophoresis (PAGE). The method allows preparation of milligram quantities of pure RNA in a single day. As RNA oligonucleotides behave differently from globular proteins in the size-exclusion column, we present standard curves for RNA oligonucleotides of different lengths on both the Superdex 75 column and the Superdex 200 size-exclusion column. Using this approach, we can separate monomer from multimeric RNA species, purify the desired RNA product from hammerhead ribozyme reactions, and isolate refolded RNA that has aggregated after long-term storage. This methodology allows simple and rapid purification of RNA oligonucleotides for structural and biophysical studies. 相似文献
10.
Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry 总被引:1,自引:0,他引:1
Vanrobaeys F Van Coster R Dhondt G Devreese B Van Beeumen J 《Journal of proteome research》2005,4(6):2283-2293
The myelin sheath is an electrically insulating layer that consists of lipids and proteins. It plays a key role in the functioning of the nervous system by allowing fast saltatory conduction of nerve pulses. Profiling of the proteins present in myelin is an indispensable prerequisite to better understand the molecular aspects of this dynamic, functionally active membrane. Two types of protein, the myelin basic protein and the proteolipid protein, account for nearly 85% of the protein content in myelin. Identification and characterization of the other "minor" proteins is, in this respect, a real challenge. In the present work, two proteomic strategies were applied in order to study the protein composition of myelin from the murine central nervous system. First, the protein mixture was separated by 2D-gel electrophoresis and, after spot excision and in-gel digestion, samples were analyzed by mass spectrometry. Via this approach, we identified 57 protein spots, corresponding to 38 unique proteins. Alternatively, the myelin sample was digested by trypsin and the resulting peptide mixture was further analyzed by off-line 2D-liquid chromatography. After the second-dimension separation (nanoLC), the peptides were spotted "on-line" onto a MALDI target and analyzed by MALDI TOF-TOF mass spectrometry. We identified 812 peptides by MALDI MS/MS, representing 93 proteins. Membrane proteins, low abundant proteins, and highly basic proteins were all represented in this shotgun proteomic approach. By combining the results of both approaches, we can present a comprehensive proteomic map of myelin, comprising a total of 103 protein identifications, which is of utmost importance for the molecular understanding of white matter and its disorders. 相似文献
11.
Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins). 总被引:5,自引:1,他引:5
下载免费PDF全文

The human plasma protein binding vitamin D and its metabolites (Gc globulin; group-specific component) has been isolated from human plasma by column affinity chromatography on gels to which monomeric actin was covalently attached. Rabbit skeletal-muscle G-actin was covalently coupled to amino-agarose gels before the application of human plasma. At actin/protein molar ratios of 4-8:1, excellent recovery (approximately 58%) of purified binding protein was achieved. After 0.75 M-NaCl washes, the binding protein was eluted from the columns in 3 M-guanidinium chloride, dialysed and analysed. These eluates contained the binding protein as 34-100% of the total protein, reflecting a 130-fold average purification in this single step. In the presence of Ca2+, gelsolin (another plasma protein that binds actin) was apparently retained by the affinity column, but this was prevented by chelation of plasma Ca2+. The actin affinity step also was effective in the isolation of the binding protein from rat, rabbit and chicken plasma, as indicated by autoradiographs of purified fractions analysed by gel electrophoresis after incubation with 25-hydroxy[26,27-3H]cholecalciferol. Further isolation by hydroxyapatite chromatography yielded a purified binding protein which displayed characteristic binding activity toward vitamin D metabolites and G-actin, and retained its physicochemical features. This brief purification sequence is relatively simple and efficient, and should prove to be useful to investigators studying this interesting plasma protein. 相似文献
12.
2′-Fluoro modified RNAs are useful as potential therapeutics and as special substrates for studying RNA function. 2′-Fluoro modified RNAs generally need to be purified after they are prepared either enzymatically or by solid-phase synthesis. Here we introduce a protocol by which 2′-fluoro modified RNAs with 57 and 58 nucleotides can be resolved and purified using ion-pair, reverse-phase high-performance liquid chromatography (HPLC). Because the size of our RNA samples is in the range of many known RNA aptamers of therapeutic values, our protocol should be generally useful. 相似文献
13.
14.
15.
Enantiomeric determination of pantoprazole in human plasma by multidimensional high-performance liquid chromatography 总被引:1,自引:0,他引:1
Cass QB Degani AL Cassiano NM Pedrazolli J 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,766(1):153-160
Multidimensional HPLC is a powerful tool for the analysis of samples of a high degree of complexity. This work reports the use of multidimensional HPLC by coupling a RAM column with a chiral polysaccharide column to the analysis of Pantoprazole in human plasma by direct injection. The enantiomers from the plasma samples were separated with high resolution on a tris(3,5-dimethoxyphenylcarbamate) of amylose phase after clean-up by a RAM BSA octyl column. Water was used as solvent for the first 5 min in a flow-rate of 1.0 ml/min for the elution of the plasmatic proteins and then acetonitrile-water (35:65 v/v) for the transfer and analysis of pantoprazole enantiomers, which were detected by UV at 285 nm. Analysis time was 28 min with no time spent on sample preparation. A good linear relationship was obtained in the concentration range of 0.20 to 1.5 microg/ml for each enantiomer. Inter and intra-day precision and accuracy were determined by one low (0.24 microg/ml), one medium (0.70 microg/ml) and one high (1.3 microg/ml) plasma concentration and gave a C.V. varying from 1.80 to 8.43% and accuracy from 86 to 92%. Recoveries of pantoprazole enantiomers were in the range of 93.7-101.2%. The validated method was applied to the analysis of the plasma samples obtained from ten Brazilian volunteers who received an 80 mg oral dose of racemic pantoprazole and was able to quantify the enantiomers of pantoprazole in all clinical samples analyzed. 相似文献
16.
17.
High pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus 总被引:12,自引:0,他引:12
B M Merrill M B LoPresti K L Stone K R Williams 《The Journal of biological chemistry》1986,261(2):878-883
Two single-stranded nucleic acid-binding proteins, UP1 and UP2, that were originally reported by Herrick and Alberts (Herrick, G., and Alberts, B. (1976) J. Biol. Chem. 251, 2124-2132) have been purified to apparent homogeneity from calf thymus by high performance liquid chromatography. The amino acid sequence of UP1 (Williams, K. R., Stone, K. L., LoPresti, M. B., Merrill, B. M., and Planck, S. R. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 5666-5670) reveals that UP1 contains 195 amino acids, including one dimethylarginine residue near its COOH terminus. Further analysis of this sequence now demonstrates that UP1 contains a 91-residue internal repeat such that when residues 3-93 (the "A" region) are aligned with residues 94-194 (the "B" region), 32% of the amino acids in these two regions are identical and an additional 39% of those changes that are seen could be accomplished by single base changes. The high degree of internal homology between residues 51-61 and 143-152 and in particular the high density of aromatic and positively charged amino acids in these two regions suggest that residues 51-61 and 143-152 may constitute two independent DNA-binding sites. Solid-phase sequencing of three tryptic peptides that together account for 9% of the 39,500-dalton UP2 protein demonstrate that there is a high degree of sequence homology between UP1 and UP2. Of the 34 residues that have been sequenced in UP2, 44% are identical in both UP1 and UP2. The blocked NH2 terminus, amino acid composition, particularly with regard to its high glycine content and the presence of dimethylarginine, and molecular weight of UP2 suggest this protein is related to proteins that have previously been found associated with heterogeneous RNA. Taken together, these data indicate that both UP1 and UP2 belong to a new family of single-stranded nucleic acid-binding proteins that may be closely related to heterogeneous ribonucleoproteins. 相似文献
18.
The effectiveness of proteome-wide protein identification and quantitative expression profiling is dependent on the ability of the analytical methodologies employed to routinely obtain information on low-abundance proteins, as these are frequently of great biological importance. Two-dimensional gel electrophoresis, the traditional method for proteome analysis, has proven to be biased toward highly expressed proteins. Recently, two-dimensional chromatography of the complex peptide mixtures generated by the digestion of unseparated protein samples has been introduced for the identification of their components, and isotope-coded affinity tags (ICAT) have been introduced to allow for accurate quantification of the components of protein mixtures by mass spectrometry. Here, we demonstrate that the combination of isotope coded affinity protein tags and multidimensional chromatography/mass spectrometry of tryptic peptide mixtures is capable of detecting and quantifying proteins of low abundance in complex samples. 相似文献
19.
I Shechter 《Analytical biochemistry》1974,58(1):30-38
Two chromatographic systems for separation of proteins by high-speed pressure liquid chromatography are described. Molecular size exclusion chromatography was achieved by the use of porous silica deactivated by Carbowax-20M to prevent protein adsorption. Protein separations were successful provided the salt concentration in the eluting buffer was relatively high.The second system described is adsorption chromatography of proteins on deactivated Porasil. This technique involves elution of the proteins from the gel by means of a salt and pH gradient. In both systems the total time required for the chromatography is less than 1 hr. 相似文献
20.
Further purification of epidermal growth factor by high-performance liquid chromatography 总被引:14,自引:0,他引:14
Epidermal growth factor (EGF) purified by the method of Savage and Cohen (J. Biol. Chem.247, 7601–7611 (1972) using DEAE-cellulose chromatography as the final purification step was further resolved into two major uv-absorbing components by reverse-phase high-performance liquid chromatography (HPLC). Both components, referred to as α-EGF and β-EGF, competed with 125I-labeled EGF for the EGF receptor, induced premature eye opening in neonatal mice, and had an amino acid composition similar to that published by Savage et al. (J. Biol. Chem.247, 7612–7621 (1972). β-EGF migrated slightly faster than α-EGF during sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. α-EGF was fourfold more potent than β-EGF and was 10-fold more potent than DEAE-purified EGF in stimulating DNA synthesis in quiescent Rat-1 cells. HPLC purification of EGF can replace the DEAE-cellulose chromatography step currently used and produces a more potent and less heterogeneous EGF species. 相似文献