首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acquisition of intracellular organelles, including mitochondria and plastids and a membrane-bounded nucleus, have been postulated to be key events in the development of the eukaryotic from the prokaryotic ancestral cell. The two major hypotheses to account for such acquisitions are: (1) primitive cells originally obtained organelles by engulfing free-living prokaryotes which then entered into symbiotic association (“endosymbiosis”) with them; (2) organelles arose through the engulfment by the primitive cell of part of its own cytoplasm. To some extent, the former hypothesis has received most support, because endosymbiosis is known to occur in extant organisms, whilst the latter hypothesis has received less support, because cytoplasmic engulfment by prokaryotes is not now thought to occur. However, during the process of endospore formation by extant bacteria, the protoplast within the single cell is observed to divide in a unique manner such that the cell in effect engulfs a portion of its own cytoplasm. The process is strikingly similar to the engulfment suggested by the second hypothesis to have initiated the evolution of eukaryotes. The engulfed cytoplasm is bounded by a double membrane within the “mother cell” and contains enzymes, ribosomes and a complete genome. In many respects this parallels the supposed primitive eukaryotic state and, it is argued, confers potential advantages on the cell, particularly through the control that the “mother cell” can exert on the enclosed compartment. It is hypothesized that bacterial endospore formation is therefore one product of evolution from an early engulfment event that led also to the development of complex eukaryotic cells.  相似文献   

2.
L N Seravin 《Tsitologiia》1986,28(8):779-789
The eukaryotic plasmalemma, eukaryotic cytoplasm with its usual cytomembranes, and eukaryotic nucleus are obligatory components of the eukaryotic cell. All other structural elements (organelles) are only derivates of the aforesaid cell components and they may be absent sometimes. There are protozoans having simultaneously no flagelles, mitochondria and chloroplasts (all the representatives of phylum Microspora, amoeba Pelomyxa palustris, and others). The following five general principles play the main role in the morphofunctional organization of the cell. The principle of hierarchy of block organization of living systems. Complex morphofunctional blocks (organelles) specific for the eukaryotic cell are formed. The compartmentalization principle. The main cell organelles (nuclei, flagellae, mitochondria, chloroplasts, etc.) undergo a relative morphological isolation from each other and other cell organelles by means of the total or partial surrounding by membranes; this may ensure the originality of their evolution and function. The principle of poly- and oligomerization of morphofunctional blocks. It permits the cell to enlarge its sizes and to raise the level of integration. The principle of heterochrony, including three subprinciples: conservatism of useful signs; a strong acceleration of evolutionary development of the separate blocks; simplification of the structure, reduction or total disappearance of some blocks. It explains a preservation of prokaryotic signs in the eukaryotic cell or in its organelles. The principle of independent origin of similar morphofunctional blocks in the process of evolution of living systems. The parallelism of the signs in unrelated groups of cells (or protists) arises due to this principle.  相似文献   

3.
L N Seravin 《Tsitologiia》1986,28(7):659-669
The exogenous (symbiotic) conception of the eukaryotic cell origin is unable to explain satisfactory the structure of mitochondria and chloroplasts. Either of these organelles possess its genome that can be compared with the viral one rather than with the bacterial one, judging by the dimensions and quantity of coding genes. The mitochondria resemble a little prokaryotes in the number of their proteins, chemical composition of their inner membrane and peculiarities of the protein-synthesizing apparatus. The primitive structure of mt DNA, the lesser quantity and greater unspecifity of the mitochondrial tRNA prove, additionally, the non-bacterial origin of this organelles. The deflexion of the genetic code from the universal one in the mitochondrial nucleoids also testify in favour of this point of view. The results of micropaleontological and paleobiochemical investigations evidence towards initial ability of the primary eukaryotes (primary protists) to photosynthesis. In this case, they did not need to acquire plastids from outside by symbiotic way. The autogenous origin of the flagellum of the primary protists was reported earlier (Seravin, 1985). The accumulated data permit us to consider that the cell organelles formed endogenously in the process of evolution of the cell.  相似文献   

4.
Galitskiĭ VA 《Tsitologiia》2005,47(2):103-120
The unified conception of the origin of eukaryotic cells has been proposed. In the author's opinion, evolutionary transformation of prokaryotic cell into eukaryotic cell took place 3.3-1.4 billion years ago and involved the next four stages: 1) the appearance of intracellular membranes due to prokaryotic cell plasmalemma invaginating into its cytoplasm; 2) the cell nucleus formation by the double sheet of intracellular membrane surrounding and sequestrating genetic material of the cell; 3) the appearance of cytoskeleton in parallel with mitotic spindle formation and gradual transition from prokaryotic way of cell division to mitosis; 4) the establishment of symbiosis between the evolving nucleated cell and prokaryotic microorganicsms that subsequently transform into mitochondria and chloroplasts. Apoptosis of cells of the present day multicellular eukaryotic organisms is supposed to be an evolutionary altered response of mitochondrian predecessors to the influence of factors, which are able to damage eukaryotic host cell. The initial biological significance of this reaction pertained to attempts of endosymbionts to leave the host cell as soon as possible, if the probability of its irreversible injury was very high, and by this to escape from their death. It is possible that numerous proteins, known as sensors or transducers of proapoptotic signals in Bcl-2--p53-dependent apoptotic pathway, were initially encoded by mitochondrial genome, whereas antiapoptotic factors and also components of receptor-mediated and granzyme B perforin dependent apoptotic pathways have cellular origin.  相似文献   

5.
Ohyanagi H  Ikeo K  Gojobori T 《Gene》2008,423(2):149-152
Various hypotheses have been proposed on the evolutionary origin of eukaryotic nucleus. Because one of the major cargoes in the nucleocytoplasmic export in the eukaryotic cell is the ribosome, its stimulating proteins called Ribosome Export Factors (REFs) might have an evolutionary history of inscribing the origin of eukaryotic nucleus. With the aim of understanding the evolutionary origin of the nucleus, here we employed the yeast REFs and searched for their evolutionary origin in more than 500 genomes of archaea and eubacteria by the PSI-BLAST search. Our results showed that the non-membranous REFs (non-mREFs) originated exclusively from eubacterial proteins, whereas the membranous REFs (mREFs) are from both archaeal and eubacterial proteins. Since the non-mREFs just work inside the nucleus while the mREFs shuttle between the nucleus and the cytoplasm, these results suggest that the extant REFs working inside the nucleus have derived exclusively from eubacterial proteins, implying that the nucleus arose in a cell that contained chromosomes possessing a substantial fraction of eubacterial genes, in line with the predictions of several models entailing endosymbiosis at eukaryote origins.  相似文献   

6.
Xie Q  Wang Y  Lin J  Qin Y  Wang Y  Bu W 《PloS one》2012,7(1):e29468
In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.  相似文献   

7.
Eukaryotes have long been thought to have arisen by evolving a nucleus, endomembrane, and cytoskeleton. In contrast, it was recently proposed that the first complex cells, which were actually proto-eukaryotes, arose simultaneously with the acquisition of mitochondria. This so-called symbiotic association hypothesis states that eukaryotes emerged when some ancient anaerobic archaebacteria (hosts) engulfed respiring alpha-proteobacteria (symbionts), which evolved into the first energy-producing organelles. Therefore, the intracellular compartmentalization of the energy-converting metabolism that was bound originally to the plasma membrane appears to be the key innovation towards eukaryotic genome and cellular organization. The novel energy metabolism made it possible for the nucleotide synthetic apparatus of cells to be no longer limited by subsaturation with substrates and catalytic components. As a consequence, a considerable increase has occurred in the size and complexity of eukaryotic genomes, providing the genetic basis for most of the further evolutionary changes in cellular complexity. On the other hand, the active uptake of exogenous DNA, which is general in bacteria, was no longer essential in the genome organization of eukaryotes. The mitochondrion-driven scenario for the first eukaryotes explains the chimera-like composition of eukaryotic genomes as well as the metabolic and cellular organization of eukaryotes.  相似文献   

8.
细胞核的起源是真核细胞进化形成的关键。回顾了过去几十年国内外对细胞核起源问题的探索历程,通过多年的摸索找到了一个条切实可行的探索细胞核起源问题的途径。其要点:在一系列的进化环节中首先抓住原始性的细胞核这一重要环节,探明原始性细胞核的特性,解决了从原始核到典型细胞核的进化问题,原始性细胞核自身的起源问题也就有了基础,为探源始性细胞核的特性,需要在现存的原生生物中间寻找最原始的类群,然后对它们的细胞核进行尽可能深入地和多方面地研究,对所得结果作进化地分析,以期提出一个原始性细胞核的模型,依据这个模型也就可对典型的细胞核的进化形成和原始核自身的起源作出推论,而这个原始性细胞核的模型,依据这个模型也就可以对典型细胞核的进化形成和原始核自身的起源作出推论,这些推论是可以设法加以检验的,不仅可以检验这些推论的正确性,而且对原始核模型的建立是重要的,可以据之加以发展,修正,甚至否定,沿此途径已经否定了原始性细胞核的涡鞭毛虫核模型,进而提出了双滴虫核模型。  相似文献   

9.
The origin of the eukaryotic cell nucleus and the selective forces that drove its evolution remain unknown and are a matter of controversy. Autogenous models state that both the nucleus and endoplasmic reticulum (ER) derived from the invagination of the plasma membrane, but most of them do not advance clear selective forces for this process. Alternative models proposing an endosymbiotic origin of the nucleus fail to provide a pathway fully compatible with our knowledge of cell biology. We propose here an evolutionary scenario that reconciles both an ancestral endosymbiotic origin of the eukaryotic nucleus (endosymbiosis of a methanogenic archaeon within a fermentative myxobacterium) with an autogenous generation of the contemporary nuclear membrane and ER from the bacterial membrane. We specifically state two selective forces that operated sequentially during its evolution: (1) metabolic compartmentation to avoid deleterious co-existence of anabolic (autotrophic synthesis by the methanogen) and catabolic (fermentation by the myxobacterium) pathways in the cell, and (2) avoidance of aberrant protein synthesis due to intron spreading in the ancient archaeal genome following mitochondrial acquisition and loss of methanogenesis.  相似文献   

10.
A novel hypothesis for the origin of eukaryotic cells is presented. It is assumed that the universal ancestor was bounded by two membranes of heterochiral lipid composition. We propose that the prokaryotic cells (the hypothetical host entity for alpha proteic-bacteria), though sharing a common ancestor with Archaea, was bounded by two membranes. The hypothesis suggests that an alpha proteic-bacterial symbiont was enclosed in the prokaryotic cells intermembrane space. In this view, the eukaryotic nuclear membrane and endomembrane system arose from the prokaryotic cells inner membrane while the eukaryotic plasma membrane arose from the prokaryotic cells outer membrane. The outlined scenario agrees with the view that engulfment of an alpha-proteic-bacterial cell by a host entity and its transformation to a mitochondrion was the driving force leading to the appearance of the first eukaryotic cell. The hypothesis seems to be consistent with the pre-cell theory, theory of membrane heredity, and the phagocytosis-late scenario.  相似文献   

11.
The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.  相似文献   

12.
Autophagy is one of the major catabolic processes present in eukaryotic cells, conserved through evolution, by which damaged or superfluous organelles are degraded in response to different stimuli. A hallmark of the autophagic pathway is the formation of double or multiple layered membranes that engulf the material to be finally degraded in the lysosomes. Despite enormous advances in the last few years to understand the autophagic process at the molecular level, the origin of the sequestering membrane has remained elusive for more than forty years and it is still a matter of debate. In this review we have summarized recent experimental evidence indicating that more than one membrane source may exist. Even though de novo formation or assembly of the isolation membrane has been proposed, recent data points to the participation of specific organelles in the biogenesis of the sequestering membrane.  相似文献   

13.
L N Seravin 《Tsitologiia》1986,28(6):563-575
The exogenous (symbiotic) conception of the eukaryotic origin is now widely spread. It is based on the recognition of the principle of combination (addition or enclosing) of diverse prokaryotic organisms; so the complicated unicellular eukaryotic organism (eukaryotic cell) was resulted. the principle of combination takes its historical scientific sources from the ideas of Buffon. With reference to the cell this principle was claimed for the first time. In our time the exogenous conception is characterized as a "symbiotic boom", because it is widely used in attempts to explain the origin of all the main organelles of the cell (right up to the micro-bodies). The autogenetic (endogenous) conception is based on the principle of straight phyliation, on the recognition of a successive evolutionary transformation of prokaryotic forms into eukaryotic ones. In this way all the cell organelles may have an endogenous origin. This principle springing from Lamarck has got a contemporary meaning in the doctrine of Darwin. In the next papers the author will present his own analysis and generation of the present day relevant facts to find out which of these two conceptions based on quite different scientific methodological principles may be correct.  相似文献   

14.
An ultrastructural study was carried out on Mikrocytos mackini, the cause of Denman Island disease in Pacific oysters Crassostrea gigas in western Canada. Three forms were identified, quiescent cells (QC), vesicular cells (VC) and endosomal cells (EC). QC occurred in the vesicular connective tissue (VCT), haemocytes (hyalinocytes), adductor and heart myocytes, and extracellularly. They had a central round to ovoid nucleus, < 7 cisternae of inactive nuclear membrane-bound Golgi, few vesicles and lysosome-like bodies. VC were rarely extracellular and usually occurred in adductor and heart myocytes, in close association with host cell mitochondria. The contents of the host cell mitochondria appeared to pass through a tubular extension into the cytoplasm of the parasite. Cytoplasmic vesicles resembled the tubular structure in appearance and size. EC occurred in the VCT, in haemocytes and extracellularly. They had a dilated nuclear membrane, sometimes containing a looped membranous structure that appeared to derive from the nucleus, and pass into the cytoplasm. A well-developed anastomosing endoplasmic reticulum connected the nuclear and plasma membranes, and endosomes were present in the cytoplasm. QC and EC cells were frequently observed tightly against, or between, the nuclear membranes of the host cell. Few organelles occurred in all forms of M. mackini, especially QC. The lack of organelles found in most eukaryotic cells, including mitochondria or their equivalents, may be due to obligate parasitism and the utilization of host cell organelles reducing the need for parasite organelles. Alternatively, perhaps M. mackini is a primitive eukaryote. Although phylogenetic affinities could not be determined, it is not a haplosporidian. A developmental cycle is proposed from these findings.  相似文献   

15.
1. A comparative analysis was made of chemosignalling systems responsible for the action of hormones, hormone-like substances, pheromones, etc. in vertebrates--multicellular invertebrates--unicellular eukaryotes. Many common features revealed in structural-functional organization of the above systems give evidence of their evolutionary conservatism. 2. It was shown that some molecular components as well as signal transduction mechanisms similar to those of higher eukaryote hormonal signalling systems are present in such early organisms as bacteria. This allowed a suggestion that the roots of chemosignalling systems are likely to be found in prokaryotes. 3. The evolution of hormonal signalling systems is discussed in terms of current theories of the origin of eukaryotic cell, its organelles and components. A hypothesis is put forward about endosymbiotic genesis of these signal transduction systems in eukaryotes. 4. A possible evolutionary scenario of the formation of hormonocompetent systems is proposed with hormone-sensitive adenylate cyclase complex taken as an example.  相似文献   

16.
Dunaliella salina cells rapidly diluted from their normal 1.71 M NaCl-containing growth medium into medium containing 0.86 M NaCl swelled within 2--4 min to an average volume 1.76 X larger and a surface area 1.53 X larger than found in control cells. Morphometric analysis of thin section electron micrographs revealed that certain organelles, including the chloroplast, nucleus, and some types of vacuoles, also expanded in surface area as much or more than did the entire cell. It is likely that glycerol, the most important osmotically active intracellular solute, was present in high concentration within these organelles as well as in the cytoplasm itself. Thin section and freeze-fracture electron microscopy were utilized to trace the origin of membrane material whose addition permitted the large increase in plasma membrane surface area and the equally large growth of the chloroplast outer envelope. The findings indicated that the plasma membrane's expansion resulted from its selective fusion with numerous small (less than or equal to 0.25 micron diam) vesicles prevalent throughout the cytoplasm. In contrast, new membrane added to the chloroplast outer envelope was drawn from an entirely different source, namely, elements of the endoplasmic reticulum.  相似文献   

17.
In the previous report, we demonstrated the origin of eukaryotic cell nuclei as the symbiosis of Archaea in Bacteria by the newly developed "Homology-Hit Analysis". In that case, we counted yeast Open Reading Frames (ORFs) showing the highest similarity to a bacterial ORF as orthologous ORFs (Orthologous ORFs were produced by speciation from a common ancestor, and have the highest similarity to each other.) by comparing whole ORFs of yeast with those of individual bacteria. However, we could not count all yeast ORFs showing the highest similarity to a bacterial ORF in functional categories of yeast. Therefore, the origin of ORFs in the functional categories of yeast could not be inferred strictly. Here, we have improved the method for detecting orthologous ORFs. In this method, we count the numbers of ORF with the highest similarity between individual yeast functional categories and individual bacteria as orthologous ORFs. By this method, it was possible to detect the correct orthologous ORFs and to infer the origins of the functional categories in eukaryotic cells. As a result, two categories, assembly of protein complexes and DNA repair were newly judged to be of Archaeal origin, while five categories, lipid (fatty-acid and isoprenoid) metabolism, protein folding and stabilization, signal transduction, organization of the plasma membrane and organization of the cytoplasm, were newly judged to be of Bacterial origin. On the other hand, the origins of two categories (meiosis and cellular import, which were determined in the previous analysis) could not be judged. It is considered that functional categories related to the nucleus have origins common to Archaea, while those related to the cytoplasm have origins common to Bacteria. From these data including the origin of plasma membrane, it was further clarified that cell nucleus originated by the symbiosis of Archaea in Bacteria.  相似文献   

18.
The result from in situ end-labelling of fragmented DNA indicated that the vessel element differentiation of the secondary xylem in Eucommia ulmoides Oliv. was a typical programmed cell death (PCD) which involved a series of events, viz. synthesis of components essential for the secondary wall formation and a well organized succession of protoplast degeneration and autolysis in the tracheary cells. The nuclei gradually became irregular with highly condensed chromatin. In some nuclei, the cistema of the nuclear envelope became unevenly dilated within which some inner membrane protrusion enclosed with nuclear materials were present. The nuclear envelope underwent disruption and the nucleus eventually degenerated. However, as the nucleus was one of the most stable components in the cell, it was among the last organelles disappeared during the autolytic process. In the process, there were two forms of degeneration in the mitochondria (Mit). In one form the Mit shrank and became disorganized; in the other, part of the matrix in the Mit became electron-lucent with breakage of the membrane nearby. The cytoplasmic component residues were phagocitized and sequestered by the dilated rough endoplasmic reticulum (RER) cisternae. The RER and vacuoles did play a vital role in the further degeneration of other organelles just similar to the lysosomes acting in the animal cells. The autolyzed debri might be utilized in situ by taking part in the formation of secondary wall or be transported to the adjacent cells through the pits.  相似文献   

19.
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.  相似文献   

20.
U G Maier 《Bio Systems》1992,28(1-3):69-73
Cryptomonads are a group of unicellular eukaryotic algae with unusual features. First, their plastids are surrounded by four membranes and second, between the two pairs of membranes there is a plasmatic compartment. This supernumerary eukaryotic compartment of the cryptomonad cell is devoid of mitochondria but contains starch grains, 80S ribosomes and a small vestigial eukaryotic nucleus called the nucleomorph. Isolation and characterization of the four genomes (from mitochondrion, plastid, nucleus and nucleomorph) of one cryptomonad, Pyrenomonas salina, demonstrates that the cryptomonads have originated from an unicellular organism related to green algae which endosymbiotically took up a eukaryotic protist related to the red algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号