首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

2.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

3.
1. Kinetic studies have been performed with beef-heart cytochrome c oxidase, with the enzyme either in its oxidized, resting state or pretreated anaerobically with different amounts of reduced cytochrome c. The techniques used for the study have been stopped-flow spectrophotometry and electron paramagnetic resonance (EPR) spectroscopy. 2. The results show that the one-electron equivalent-reduced enzyme rapidly oxidizes one further equivalent of aerobically or anaerobically added ferrocytochrome c, with a rate constant of 5 . 10(6) M-1 . s-1. 3. When an excess of ferrocytochrome c in the presence of oxygen is added to the one-electron-reduced enzyme, the same turnover rate is obtained as in experiments with the resting enzyme. 4. The one-electron equivalent-enzyme reacts with CO with a rate constant of 4 . 10(4) M-1 . s-1 to yield approx. 35% of the CO compound as compared with the reaction between the fully reduced enzyme and CO. 5. It is shown that on reduction the enzyme is converted into an active form, but it is concluded that the enzyme does not have to be fully reduced before it is catalytically active.  相似文献   

4.
The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this 'burst' phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.  相似文献   

5.
The reaction of Neurospora crassa cytochrome c oxidase with CO was studied by flash-photolysis and rapid-mixing experiments, leading to the determination of the association and dissociation rate constants (7 X 10(4) M-1 X s-1 and 0.02s-1 respectively). Pre-steady-state kinetic investigations of the catalytic properties of the enzyme showed that under proper conditions Neurospora cytochrome c oxidase can be 'pulsed', i.e. activated, like the mammalian enzyme. The 'pulsed' species is spectroscopically different from the 'resting' one, and the decay into the 'resting' state is fast (t1/2 approx. 3 min).  相似文献   

6.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2.10(4) M-1.s-1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s-1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM-131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs approximately 0.02 s) entry of a third electron.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

8.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

10.
Cysteine alone reduces horse heart cytochrome c very slowly (k approximately or equal too 1.0 M-1s-1) with a rate constant virtually identical in high and low ionic strength buffers. Copper catalyzes this reaction increasing the rate by a factor of 10(5) in 50 mM phosphate and by a factor of 10(6) in 10mM Tris buffers. When ferricytochrome c and cysteine are mixed in an oxygen electrode a "burst" of oxygen uptake is seen, the decline in which parallels the reduction of cytochrome c. When cytochrome oxidase is added to such a mixture two routes of electron transfer to oxygen exist: enzymatic and ferricytochrome c dependent nonenzymatic. Both processes are sensitive to cyanide, but azide inhibits only the authentic cytochrome c oxidase catalyzed process and BCS the ferricytochrome c stimulated reaction.  相似文献   

11.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

12.
P E Morin  E Freire 《Biochemistry》1991,30(34):8494-8500
The kinetic and thermodynamic parameters associated with the enzymatic reaction of yeast cytochrome c oxidase with its biological substrate, ferrocytochrome c, have been measured by using a titration microcalorimeter to monitor directly the rate of heat production or absorption as a function of time. This technique has allowed determination of both the energetics and the kinetics of the reaction under a variety of conditions within a single experiment. Experiments performed in buffer systems of varying ionization enthalpies allow determination of the net number of protons absorbed or released during the course of the reaction. For cytochrome c oxidase the intrinsic enthalpy of reaction was determined to be -16.5 kcal/mol with one (0.96) proton consumed for each ferrocytochrome c molecule oxidized. Activity measurements at salt concentrations ranging from 0 to 200 mM KCl in the presence of 10 mM potassium phosphate, pH 7.40, and 0.5 mM EDTA display a biphasic dependence of the electron transferase activity upon ionic strength with a peak activity observed near 50 mM KCl. The ionic strength dependence was similar for both detergent-solubilized and membrane-reconstituted cytochrome c oxidase. Despite the large ionic strength dependence of the kinetic parameters, the enthalpy measured for the reaction was found to be independent of ionic strength. Additional experiments involving direct transfer of the enzyme from low to high salt conditions produced negligible enthalpy changes that remained constant within experimental error throughout the salt concentrations studied (0-200 mM KCl). These results indicate that the salt effect on the enzyme activity is of entropic origin and further suggest the absence of a major conformational change in the enzyme due to changes in ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

14.
The effect of nitrite on cytochrome oxidase   总被引:1,自引:0,他引:1  
Nitrite inhibits the oxygen uptake by the system ferrocytochrome c-cytochrome oxidase with Ki = 1.5 mM. In the absence of ferrocytochrome c the oxygen uptake by cytochrome oxidase in the presence of nitrite was observed indicating that the enzyme has some nitrite oxidase activity. Nitrite induces changes in optical difference spectra of cytochrome oxidase and, in particular, the formation of the transient band at 607 nm. The reciprocal relation was observed between the intensity of this band and the rate of the oxygen uptake by cytochrome oxidase. This means that the form of the enzyme with this band does not involved in the nitrite oxidase activity. It is suggested that the nitrite oxidase activity relates to the oxygen binding site rather than the cytochrome c binding site of the enzyme.  相似文献   

15.
The binding of cyanide to both oxidized and ascorbate-reduced forms of Pseudomonas cytochrome c-551 oxidase was investigated. Spectral studies on the oxidized enzyme and its apoprotein showed that the ligand can bind to both the c and d, haem components of the molecule, and kinetic observations indicated that both chromophores reacted, under a variety of conditions, with very similar rates. Cyanide combination velocities were dependent on ligand concentration, and increasing the pH also accelerated the reaction; the second-order rate constant was estimated as approx. 0.2M-1 . s-1 at pH 7.0. The binding of cyanide to the protein was observed to have a considerable influence on reduction of the enzyme by ascorbate. Spectral and kinetic observations have revealed that the species haem d13+-cyanide and any unbound haem c may react relatively rapidly with the reductant, but the behaviour of cyanide-bound haem c indicates that it may not be reduced without prior dissociation of the ligand, which occurs relatively slowly. The reaction of reduced Pseudomonas cytochrome oxidase with cyanide is radically different from that of the oxidized protein. In this case the ligand only binds to the haem d1 component and reacts much more rapidly. Stopped-flow kinetic measurements showed the binding to be biphasic in form. Both the rates of these processes were dependent on cyanide concentration, with the fast phase having a second-order rate constant of 9.3 X 10(5) M-1 . s-1 and the slow phase one of 2.3 X 10(5) M-1 . s-1. The relative proportions of the two phases also showed a dependency on cyanide concentration, the slower phase increasing as the cyanide concentration decreased. Computer simulations indicate that a reaction scheme originally proposed for the reaction of the enzyme with CO is capable of providing a reasonable explanation of the experimental results. Static-titration data of the reduced enzyme with with cyanide indicated that the binding was non-stoicheiometric, the ligand-binding curve being sigmoidal in shape. A Hill plot of the results yielded a Hill coefficient of 2.6.  相似文献   

16.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

17.
The steady-state oxidation of ferrocytochrome c by cytochrome oxidase monitored spectrophotometrically showed that: (1) the kinetics were strictly biphasic with purified enzyme, while mitochondrial membrane-bound enzyme exhibited multiphasic kinetics with extended low affinity phases; (2) the TNmax for the highest affinity phase was as slow as 5-10 electron X s-1 for both preparations, while for the low affinity phases it was about 45 electron X s-1 for the purified enzyme and 150 electron X s-1 for the mitochondrial membrane-bound enzyme; (3) reconstitution of purified enzyme into acidic phospholipid vesicles partially repleted the extended low affinity phases, while reconstitution into uncharged vesicles had no effect.  相似文献   

18.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

19.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

20.
Cytochrome c oxidase was found to be competitively inhibited by a complex formed between Fe3+ and the cardiotoxic antitumour drug adriamycin (doxorubicin) with an inhibition constant, Ki, of 12 microM. This competitive inhibition precedes the slower Fe3+-adriamycin induced inactivation of cytochrome c oxidase. In strong contrast with this result, free adriamycin was not observed to either inhibit or inactivate cytochrome c oxidase (Ki greater than 3 mM). Since, typically, polycations are known to inhibit cytochrome c oxidase, the competitive inhibition displayed by the Fe3+-adriamycin complex may also result from its polycationic character. Cytochrome c oxidase was also inhibited by pentan-1-ol (Ki 13 mM), and kinetic studies carried out in the presence of both inhibitors demonstrated that the Fe3+-adriamycin complex and pentan-1-ol are mutually exclusive inhibitors of cytochrome c oxidase. The inhibitor pentan-1-ol was also effective in preventing the slow inactivation of cytochrome c oxidase induced by Fe3+-adriamycin, presumably by blocking its binding to the enzyme. It is postulated that the slow inactivation of cytochrome c oxidase occurs when reactive radical species are produced while the Fe3+-adriamycin is complexed to cytochrome c oxidase in an enzyme-inhibitor complex. The Fe3+-adriamycin-induced inactivation of cytochrome c oxidase may be, in part, responsible for the cardiotoxicity of adriamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号