首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
We have previously prepared human anti-double-stranded (ds) DNA IgG Fab clones using phage-display technology. Nucleotide sequence analysis of genes of immunoglobulin (Ig) heavy and light chain variable regions in these Fab clones suggested that the DNA-binding activity of the clones depended on light chain usage. To confirm the role of the light chain in antibody binding to DNA, we constructed in the present study's new recombined Fab clones by heavy and light chain shuffling between the original anti-dsDNA Fab clones. Clones constructed by pairing Fdgamma fragments with the light chain from a high DNA-binding clone showed high DNA-binding activities, whereas other constructed clones using light chains from low DNA-binding clones showed low DNA-binding activities. Our results indicate that light chains in anti-dsDNA antibodies can determine the DNA-binding activity of the antibodies. Ig chain shuffling of phage-display antibodies may be useful for investigating the molecular mechanisms for antigen-antibody binding of human autoantibodies.  相似文献   

2.
The presence of 8-oxoguanine (8-oxoG) in DNA is considered a marker of oxidative stress and DNA damage. We describe a multifluorescence technique to detect the localization of 8-oxoG in both nuclear and mitochondrial DNA using a mouse recombinant Fab 166. The Fab was generated by repertoire cloning and combinatorial phage display, and specifically recognized 8-oxoG in DNA, as determined by competitive enzyme-linked immunosorbent assays (ELISAs). In situ detection of 8-oxoG was accomplished using rat lung epithelial (RLE) cells and human B lymphoblastoid (TK6) cells treated with hydrogen peroxide (H(2)O(2)) or ionizing radiation, respectively. Using confocal scanning laser microscopy, we observed nuclear and perinuclear immunoreactivity of 8-oxoG in control cultures. The simultaneous use of a nuclear DNA stain, propidium iodide, or the mitochondrial dye, MitoTracker (Molecular Probes, Eugene, OR, USA), confirmed that 8-oxoG immunofluorescence occurred in nuclear and mitochondrial DNA. Marked increases in the presence of 8-oxoG in nuclear DNA were apparent after treatment with H(2)O(2) or ionizing radiation. In control experiments, Fab 166 was incubated with 200 microM purified 8-oxodG or with formamidopyrimidine DNA-glycosylase (Fpg) to remove 8-oxoG lesions in DNA. These protocols attenuated both nuclear and mitochondrial staining. We conclude that both nuclear and mitochondrial oxidative DNA damages can be simultaneously detected in situ using immunofluorescence labeling with Fab 166 and confocal microscopy.  相似文献   

3.
Anti-DNA antibodies play important roles in the pathogenesis of autoimmune diseases. They also represent a unique and relatively unexplored class of DNA-binding protein. Here, we present a study of conformational changes induced by DNA binding to an anti-ssDNA Fab known as DNA-1. Three crystal structures are reported: a complex of DNA-1 bound to dT3, and two structures of the ligand-free Fab. One of the ligand-free structures was determined from crystals exhibiting perfect hemihedral twinning, and the details of structure determination are provided. Unexpectedly, five residues (H97-H100A) in the apex of heavy chain complementarity-determining region 3 (HCDR3) are disordered in both ligand-free structures. Ligand binding also caused a 2-4A shift of the backbone of Tyr L92 and ordering of the L92 side-chain. In contrast, these residues are highly ordered in the Fab/dT3 complex, where Tyr H100 and Tyr H100A form intimate stacking interactions with DNA bases, and L92 forms the 5' end of the binding site. The structures suggest that HCDR3 is very flexible and adopts multiple conformations in the ligand-free state. These results are discussed in terms of induced fit and pre-existing equilibrium theories of ligand binding. Our results allow new interpretations of existing thermodynamic and mutagenesis data in terms of conformational entropy and the volume of conformational space accessible to HCDR3 in the ligand-free state. In the context of autoimmune disease, plasticity of the ligand-free antibody could provide a mechanism by which anti-DNA antibodies bind diverse host ligands, and thereby contribute to pathogenicity.  相似文献   

4.
5.
Kim SH  Titlow CC  Margolies MN 《Gene》2000,241(1):19-25
Phage display has been used extensively in antibody (Ab) engineering. Sometimes, however, phage display vectors exhibit deletion of immunoglobulin (Ig) genes. As an approach to circumvent the recombination-deletion of the murine anti-digoxin Fab 40-50 cloned into the pComb3 vector, the vector was modified with short synthetic oligonucleotides by replacing a pelB leader sequence with a gene 3 (g3) leader sequence and by using a single lacZ promoter sequence. By this means, the N-terminal amino acids of the L chain and Fd remained unchanged, and a random HCDR3 library built on this newly designed vector did not exhibit the recombination-deletion.  相似文献   

6.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

7.
Specific antibodies interfere with the function of human tumor-associated carbonic anhydrase IX (CA IX), and show potential as tools for anticancer interventions. In this work, a correlation between structural elements and thermodynamic parameters of the association of antibody fragment Fab M75 to a peptide corresponding to its epitope in the proteoglycan-like domain of CA IX, is presented. Comparisons of the crystal structures of free Fab M75 and its complex with the epitope peptide reveal major readjustments of CDR-H1 and CDR-H3. In contrast, the overall conformations and positions of CDR-H2 and CDR-L2 remain unaltered, and their positively charged residues may thus present a fixed frame for epitope recognition. Adoption of the altered CDR-H3 conformation in the structure of the complex is accompanied by an apparent local stabilization. Analysis of domain mobility with translation-libration-screw (TLS) method shows that librations of the entire heavy chain variable domain (V(H)) decrease and reorient in the complex, which correlates well with participation of the heavy chain in ligand binding. Isothermal titration microcalorimetry (ITC) experiments revealed a highly unfavorable entropy term, which can be attributed mainly to the decrease in the degrees of freedom of the system, the loss of conformational freedom of peptide and partially to a local stabilization of CDR-H3. Moreover, it was observed that one proton is transferred from the environment to the protein-ligand complex upon binding. Molecular dynamics simulations followed by molecular mechanics/generalized Born surface area (MM-GBSA) calculations of the ligand (epitope peptide) binding energy yielded energy values that were in agreement with the ITC measurements and indicated that the charged residues play crucial role in the epitope binding. Theoretical arguments presented in this work indicate that two adjacent arginine residues (ArgH50 and ArgH52) are responsible for the observed proton transfer.  相似文献   

8.
The objective of this work is to compare the three‐dimensional structures of “humanized” and mouse–human chimeric forms of a murine monoclonal antibody elicited against human γ‐interferon. It is also to provide structural explanations for the small differences in the affinities and biological interactions of the two molecules for this antigen. Antigen‐binding fragments (Fabs) were produced by papain hydrolysis of the antibodies and crystallized with polyethylene glycol (PEG) 8000 by nearly identical microseeding procedures. Their structures were solved by X‐ray analyses at 2.9 Å resolution, using molecular replacement methods and crystallographic refinement. Comparison of these structures revealed marked similarities in the light (L) chains and near identities of the constant (C) domains of the heavy (H) chains. However, the variable (V) domains of the heavy chains exhibited substantial differences in the conformations of all three complementarity‐determining regions (CDRs), and in their first framework segments (FR1). In FR1 of the humanized VH, the substitution of serine for proline in position 7 allowed the N‐terminal segment (designated strand 4‐1) to be closely juxtaposed to an adjacent strand (4‐2) and form hydrogen bonds typical of an antiparallel β‐pleated sheet. The tightening of the humanized structure was relayed in such a way as to decrease the space available for the last portion of HFR1 and the first part of HCDR1. This compression led to the formation of an α‐helix involving residues 25–32. With fewer steric constraints, the corresponding segment in the chimeric Fab lengthened by at least 1 Å to a random coil which terminated in a single turn of 310 helix. In the humanized Fab, HCDR1, which is sandwiched between HCDR2 and HCDR3, significantly influenced the structures of both regions. HCDR2 was forced into a bent and twisted orientation different from that in the chimeric Fab, both at the crown of the loop (around proline H52a) and at its base. As in HCDR1, the last few residues of HCDR2 in the humanized Fab were compressed into a space‐saving α‐helix, contrasting with a more extended 310 helix in the chimeric form. HCDR3 in the humanized Fab was also adjusted in shape and topography. The observed similarities in the functional binding activities of the two molecules can be rationalized by limited induced fit adjustments in their structures on antigen binding. While not perfect replicas, the two structures are testimonials to the progress in making high affinity monoclonal antibodies safe for human use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Gibberellins, a class of plant hormones, consist of more than 120 members. Only a few of them are recognized by a receptor that remains unknown. The haptenic mouse monoclonal antibody, 4-B8(8)/E9, was generated against gibberellin A(4) (GA(4)) to recognize biologically active GA selectivity, and we attempted to confirm the binding properties between the antibody and GA(4). We carried out an X-ray crystallographic analysis of the 4-B8(8)/E9 Fab fragment complexed with GA(4) at a 2.8 A resolution by using the molecular replacement method. The crystal structure of the Fab fragment showed the typical immunoglobulin fold of the beta-barrel structure which is the common motif of all antibodies. A small hapten-combining site was made up of three heavy chain CDR loops. On the other hand, CDRs of the light chain did not interact directly with GA(4). The C/D rings of the GA(4) molecule were in van der Waals contact mainly with the aromatic side chain of Tyr100AH and Phe100BH of CDR-H3. The 3 beta-hydroxyl and 6 beta-carboxyl groups were, respectively, hydrogen-bonded to the main chain of Ala33H and to the Thr53H heavy chain.  相似文献   

10.
人源噬菌体抗体库的构建及抗VEGF抗体的初步筛选分析   总被引:3,自引:0,他引:3  
应用噬菌体表面呈递技术构建人抗体组合文库 .筛选获得了结合血管内皮细胞生长因子( VEGF)的人噬菌体 Fab抗体 ,并对所获抗体的多样性进行了进一步分析 .从不同人群外周血淋巴细胞提取总 RNA,经反转录后采用家族特异性免疫球蛋白可变区基因引物与免疫球蛋白信肽序列引物 ,通过改变 PCR条件或半套式扩增分别获得全部亚型的轻、重链抗体 Fab段 ,并重组到噬粒载体 p Comb3H中 ,经电转化大肠杆菌 XL- 1 Blue,构建了 1 .5× 1 0 8完整组合抗体库 .利用 VEGF12 1对该库经过 4轮固相筛选后 ,获得 1 2个可与 VEGF特异结合的阳性克隆 .酶谱分析表明了所获抗体克隆的多样性 .为通过基因工程改造 ,进一步获得可用于临床的人源 VEGF抗体奠定了基础 .  相似文献   

11.
The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde–acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells.  相似文献   

12.
To investigate the molecular structural and functional characteristics of tumor-suppressive anti-ErbB-2 monoclonal antibody (mAb) SER4, we performed mAb-gene cloning and epitope mapping by a phage display system. Structural analysis demonstrated that both the heavy chain (HC) and light chain variable regions are highly homologous with the derived germline sequences, while the HC complementarity determining region (HCDR) 3 has a relatively short length and biased amino acid usage. A cloned gene-derived recombinant Fab (rFab) fragment showed antigen binding activity and specificity comparable to the parent mAb. Cross-linking of the rFab fragment with the anti-Fab antibody elicited cell growth inhibition in vitro. These results imply that the cloned genes actually encode the Fab part of SER4. The epitope mimetic peptide (mimotope) isolated by panning a phage-displayed random peptide library against SER4 showed no cross-reactivity with mAbs other than SER4. The mimotope was found to be homologous with (87)AHNQVRQVPLQR(98) in the extracellular domain of ErbB-2 by means of a clustalw search. Since SER4 causes the growth inhibition of ErbB-2 positive cells, the predicted epitope sequence may constitute the putative functional domain of ErbB-2.  相似文献   

13.
DNA 7-hydro-8-oxoguanine (8-oxoG) is implicated in frameshift formation in an G(6) sequence of the HPRT gene in mismatch repair (MMR) defective cells. Using oligonucleotides based on this frameshift hotspot, we investigated how a single 8-oxoG modified the structural and dynamic properties of the G(6) tract. A 30 ns molecular dynamics (MD) simulation indicated compression of the minor groove in the immediate vicinity of the lesion. Fluorescence polarization anisotropy (FPA) and MD demonstrated that 8-oxoG increases DNA torsional rigidity and also constrains the movement of the single-stranded region at the single/double stranded DNA junction of model DNA replication template/primer. These constraints influenced the efficiency of primer extension by Klenow (exo(-)) DNA polymerase.  相似文献   

14.
The crystal structure of a fluorescein-Fab (4-4-20) complex was determined at 2.7 A resolution by molecular replacement methods. The starting model was the refined 2.7 A structure of unliganded Fab from an autoantibody (BV04-01) with specificity for single-stranded DNA. In the 4-4-20 complex fluorescein fits tightly into a relatively deep slot formed by a network of tryptophan and tyrosine side chains. The planar xanthonyl ring of the hapten is accommodated at the bottom of the slot while the phenylcarboxyl group interfaces with solvent. Tyrosine 37 (light chain) and tryptophan 33 (heavy chain) flank the xanthonyl group and tryptophan 101 (light chain) provides the floor of the combining site. Tyrosine 103 (heavy chain) is situated near the phenyl ring of the hapten and tyrosine 102 (heavy chain) forms part of the boundary of the slot. Histidine 31 and arginine 39 of the light chain are located in positions adjacent to the two enolic groups at opposite ends of the xanthonyl ring, and thus account for neutralization of one of two negative charges in the haptenic dianion. Formation of an enol-arginine ion pair in a region of low dielectric constant may account for an incremental increase in affinity of 2-3 orders of magnitude in the 4-4-20 molecule relative to other members of an idiotypic family of monoclonal antifluorescyl antibodies. The phenyl carboxyl group of fluorescein appears to be hydrogen bonded to the phenolic hydroxyl group of tyrosine 37 of the light chain. A molecule of 2-methyl-2,4-pentanediol (MPD), trapped in the interface of the variable domains just below the fluorescein binding site, may be partly responsible for the decrease in affinity for the hapten in MPD.  相似文献   

15.
The three-dimensional structure of a complex of an Fab from a murine IgG2b(lambda) antibody (NC10.14) with a high potency sweet tasting hap- ten, N-(p-cyanophenyl)-N'-(diphenylmethyl)-N"-(carboxymethyl)guan idine (NC174), has been determined to 2.6 A resolution by X-ray crystallography. This complex crystallized in the triclinic space group P1, with two molecules in the asymmetric unit. In contrast to a companion monoclonal antibody (NC6.8) with a kappa-type light chain and similar high affinity for the NC174 ligand, the NC10.14 antibody possessed a large and deep antigen combining site bounded primarily by the third complementarity-determining regions (CDR3s) of the light and heavy chains. CDR3 of the heavy chain dominated the site and its crown protruded into the external solvent as a type 1' beta-turn. NC174 was nested against HCDR3 and was held in place by two tryptophan side-chains (L91 and L96) from LCDR3. The diphenyl rings were accommodated on an upper tier of the binding pocket that is largely hydrophobic. At the floor of the site, a positively charged arginine side-chain (H95) stabilized the orientation of the electronegative cyano group of the hapten. The negative charge on the acetate group was partially neutralized by a hydrogen bond with the phenolic hydroxyl group of tyrosine H58. Comparisons of the modes of binding of NC174 to the NC6.8 and NC10.14 antibodies illustrate the enormous structural and mechanistic diversity manifest by immune responses.  相似文献   

16.
Hegde V  Wang M  Mian IS  Spyres L  Deutsch WA 《DNA Repair》2006,5(7):810-815
Previous studies have shown that human ribosomal protein S3 (hS3) has a high apparent binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA and interacts with the human base excision repair (BER) proteins OGG1 and APE/Ref-1. We used a combination of computational and experimental approaches to understand the role of hS3 in BER and its potential to hinder repair of 8-oxoG lesions by OGG1 and APE/Ref-1. Sequence analysis was employed to identify hS3 residues likely to be involved in binding to 8-oxoG. One putative site, lysine 132 (K132), located in a helix-hairpin-helix DNA binding motif, was mutated to alanine (K132A). The hS3-K132A mutant retained the ability to cleave abasic DNA, but its capacity to bind 8-oxoG was abrogated completely. The ability of OGG1 to cleave an 8-oxoG-oligonucleotide substrate pre-incubated with hS3 or hS3-K132A was also tested. Pre-incubations with wild-type hS3 and 8-oxoG-containing oligonucleotides completely prevented the subsequent removal of 8-oxoG by OGG1. On the other hand, OGG1 incubations combined with hS3-K132A stimulated cleavage of 8-oxoG in excess of two-fold, confirming previous observations that hS3 positively interacts with OGG1, but only under conditions in which the binding of hS3 to 8-oxoG is limited. Overall, the ability of OGG1 to repair 8-oxoG is compromised when hS3 is bound to 8-oxoG sites. Conversely, in the absence of DNA binding, hS3 interacts positively with OGG1 to produce a more robust removal of 8-oxoG residues in DNA.  相似文献   

17.
Antibody humanization by framework shuffling   总被引:9,自引:0,他引:9  
We report here the humanization of a mouse monoclonal antibody (mAb B233) using a new technique which we call framework shuffling. mAb B233 was raised against the human receptor tyrosine kinase EphA2 which is selectively up-regulated in many cancer cell lines and as such constitutes an attractive target for cancer therapy. The six CDRs of B233 were fused in-frame to pools of corresponding individual human frameworks. These human frameworks encompassed all known heavy and light (kappa) chain human germline genes. The resulting Fab combinatorial libraries were then screened for binding to the antigen. A two-step selection process, in which the light and heavy chains of the parental mAb were successively humanized, resulted in the identification of several humanized variants that retained binding to EphA2. More precisely, after conversion to human IgG1, the dissociation constants of three select fully humanized variants ranged from 3 to 48 nM. This brings the best framework-shuffled, humanized binder within 5-fold of the avidity of parental mAb B233. Importantly, these humanized IgGs also possessed biochemical activities similar to those of parental mAb B233 as judged by induction of EphA2 phosphorylation. Thus, without requiring any rational design or structural information, this new humanization approach allows to rapidly identify various human framework combinations able to support the structural feature(s) of the CDRs which are essential for binding and functional activity.  相似文献   

18.
为构建小鼠噬菌体抗体库 ,以获得对人血纤维蛋白特异的抗体 ,由小鼠脾脏提取 m RNA,经反转录 PCR扩增出抗体重链、轻链可变区基因片段 ,将二者和一段编码十五肽 (Gly4 Ser) 3的 DNA接头借助重组 PCR组装成为单链抗体 (single- chain antibody,Sc Ab)基因 .将单链抗体基因插入噬菌体展示载体 p CANTAB- 5E,通过电击法转化大肠杆菌 TG1细胞 ,用辅助噬菌体 M1 3K0 7超感染 ,构建了库容量在 1 0 8以上的噬菌体单链抗体库 .利用亲和选择方法 (淘选 ) ,从噬菌体抗体库中选得血纤维蛋白特异的单链抗体 .模拟抗体成熟过程 ,用 DNA改组 (DNA shuffling)技术使抗体基因重新组合 ,构建新的改组抗体库 ,并从中选择到提高了亲和力的噬菌体单链抗体 .抗体基因在大肠杆菌中表达 ,表达蛋白经 Sephadex G- 75柱层析分离 ,得到初步纯化的单链抗体蛋白 .  相似文献   

19.
Background The HAMA response is a major challenge when murine antibodies are repeatedly administered for antibody directed enzyme prodrug therapy in vivo. In this study we have achieved humanization of the anti-γ-seminoprotein E4B7 murine mAb by guided selection. Methods Using optimal Ig Fab primers, human Fd and CL gene repertoires were amplified by RT-PCR from PBMCs of prostate cancer patients. The human Lc gene repertoire was first paired with the murine Fd gene of E4B7 mAb to construct a pComb3X hybrid Fab display library. This hybrid library was screened with purified γ-seminoprotein antigen. The human Fd gene repertoire was then paired with the selected human Lc to construct a fully human Fab library. After four more rounds of panning, completely human Fab antibodies specific for γ-seminoprotein were selected and further identified. Results First, using the E4B7 Fd gene as a template, light chain shuffling was achieved by panning the hybrid library. Then, using the selected Lc as a template, a human Fab antibody against γ-seminoprotein was produced through heavy chain Fd shuffling. Western blotting, ELISA, and flow cytometry results demonstrated that the resulting human Fab antibody resembled the parental E4B7 mAb in that they both recognized the same epitope with similar affinities. Fluorescent cell staining and immunohistochemistry analysis further confirmed that this newly constructed human anti-γ-seminoprotein Fab antibody indeed specifically bound prostate cancer cells and tissue. Conclusions Through guided-selection, we successfully produced a human anti-γ-seminoprotein Fab antibody. This work lays the foundation for optimal antibody-directed enzyme prodrug therapy of prostate cancer using a fully human Fab antibody. Zhang Qing and Zhang Si-He are co-first authors on the publication.  相似文献   

20.
A functional hetero-oligomeric protein was, for the first time, displayed on the yeast cell surface. A hetero-oligomeric Fab fragment of the catalytic antibody 6D9 can hydrolyze a non-bioactive chloramphenicol monoester derivative to produce chloramphenicol. The gene encoding the light chain of the Fab fragment of 6D9 was expressed with the tandemly-linked C-terminal half of alpha-agglutinin. At the same time, the gene encoding the Fd fragment of the heavy chain of the Fab fragment was expressed as a secretion protein. The combined Fab fragment displayed and associated on the yeast cell surface had an intermolecular disulfide linkage between the light and heavy chains. This protein fragment catalyzed the hydrolysis of a chloramphenicol monoester derivative and exhibited high stability in binding with a transition-state analog (TSA). The catalytic reaction was also inhibited by the TSA. The successful display of a functional hetero-oligomeric catalytic antibody provides a useful model for the display of hetero-oligomeric proteins and enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号