首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent modification of DNA regulates memory formation   总被引:10,自引:0,他引:10  
Miller CA  Sweatt JD 《Neuron》2007,53(6):857-869
  相似文献   

2.
3.
4.
5.
Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.  相似文献   

6.
Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions.  相似文献   

7.
8.
Bisphenol-A (BPA), an environmental endocrine disruptor, has been reported to possess weak estrogenic, anti-estrogenic, and anti-androgen properties. Previous evidence indicates that perinatal exposure to low levels of BPA affects anxiety-like and cognitive behaviors in adult rodents. The present study aims to investigate the effect of BPA on emotional memory using the contextual fear conditioning of male mice in adulthood exposed to BPA for 90 days. The results indicated that exposure to BPA increased the freezing time 1 h and 24 h after fear conditioning training. Furthermore, western blot analyses showed that BPA exposure decreased the level of N-methyl-d-aspartic acid (NMDA) receptor subunit NR1 and increased the expression of histone deacetylase 2 (HDAC2) before fear conditioning training in the hippocampus of male mice. One and twenty-four hours after fear conditioning training, BPA enhanced the changes of the expressions of NR1, phosphorylated extracellular regulated protein kinases (ERK1/2), and histone acetylation induced by contextual fear conditioning in the hippocampus. These results suggest that long term exposure to BPA enhanced fear memory by the concomitant increased level of NMDA receptor and/or the enhanced histone acetylation in the hippocampus, which may be associated with activation of ERK1/2 signaling pathway.  相似文献   

9.
10.
Regulation of histone acetylation during memory formation in the hippocampus   总被引:16,自引:0,他引:16  
Formation of long term memory begins with the activation of many disparate signaling pathways that ultimately impinge on the cellular mechanisms regulating gene expression. We investigated whether mechanisms regulating chromatin structure were activated during the early stages of long term memory formation in the hippocampus. Specifically, we investigated hippocampal histone acetylation during the initial stages of consolidation of long term association memories in a contextual fear conditioning paradigm. Acetylation of histone H3 in area CA1 of the hippocampus was regulated in contextual fear conditioning, an effect dependent on activation of N-methyl-D-aspartic acid (NMDA) receptors and ERK, and blocked using a behavioral latent inhibition paradigm. Activation of NMDA receptors in area CA1 in vitro increased acetylation of histone H3, and this effect was blocked by inhibition of ERK signaling. Moreover, activation of ERK in area CA1 in vitro through either the protein kinase C or protein kinase A pathways, biochemical events known to be involved in long term memory formation, also increased histone H3 acetylation. Furthermore, we observed that elevating levels of histone acetylation through the use of the histone deacetylase inhibitors trichostatin A or sodium butyrate enhanced induction of long term potentiation at Schaffer-collateral synapses in area CA1 of the hippocampus, a candidate mechanism contributing to long term memory formation in vivo. In concert with our findings in vitro, injection of animals with sodium butyrate prior to contextual fear conditioning enhanced formation of long term memory. These results indicate that histone-associated heterochromatin undergoes changes in structure during the formation of long term memory. Mimicking memory-associated changes in heterochromatin enhances a cellular process thought to underlie long term memory formation, hippocampal long term potentiation, and memory formation itself.  相似文献   

11.
We injected small interfering RNAs (siRNAs) directly into the hippocampus of wild-type mice, knocking down expression of cyclic AMP responsive element-binding protein (CREB) and disrupting long-term, but not short-term, memory after both contextual and trace fear conditioning. In contrast, similar knockdown of siRNA for protein phosphatase 1 (PP1) was sufficient to enhance contextual and temporal memory formation, thereby demonstrating with such a gain-of-function effect a lack of any general deleterious effect for this method of RNAi-mediated gene knockdown. Our findings clearly confirm that contextual memory formation involves CREB and PP1 as positive and negative regulators, respectively, and show for the first time that temporal memory formation shares this mechanism. More generally, we establish that direct injection of siRNA into identified adult brain regions yields specific gene knockdowns, which can be used to validate in vivo candidate genes involved in behavioral plasticity.  相似文献   

12.
13.
14.
Contextual fear memory processing requires coordinated changes in neuronal activity and molecular networks within brain. A large number of fear memory-related genes, however, still remain to be identified. Synaptotagmin 13 (Syt13), an atypical member of synaptotagmin family, is highly expressed in brain, but its functional roles within brain have not yet been clarified. Here, we report that the expression of Syt13 mRNA in adult mouse brain was altered following contextual fear conditioning. C57BL/6 mice were exposed to a novel context and stimulated by strong electrical footshock according to a contextual fear conditioning protocol. After 24h, the mice were re-exposed to the context without electrical footshock for the retrieval of contextual fear memory. To investigate the relationship between Syt13 and contextual fear memory, we carried out in situ hybridization and analyzed gene expression patterns for Syt13 at four groups representing temporal changes in brain activity during contextual fear memory formation. Contextual fear conditioning test induced significant changes in mRNA levels for Syt13 within various brain regions, including lateral amygdala, somatosensory cortex, piriform cortex, habenula, thalamus, and hypothalamus, during both acquisition and retrieval sessions. Our data suggest that Syt13 may be involved in the process of contextual fear memory.  相似文献   

15.
16.
Fragile X syndrome (FXS) is a common cause of inherited intellectual disability and a well-characterized form of autism spectrum disorder. As brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of FXS we examined the effects of reduced BDNF expression on the behavioral phenotype of an animal model of FXS, Fmr1 knockout (KO) mice, crossed with mice carrying a deletion of one copy of the Bdnf gene (Bdnf(+/-)). Fmr1 KO mice showed age-dependent alterations in hippocampal BDNF expression that declined after the age of 4 months compared to wild-type controls. Mild deficits in water maze learning in Bdnf(+/-) and Fmr1 KO mice were exaggerated and contextual fear learning significantly impaired in double transgenics. Reduced BDNF expression did not alter basal nociceptive responses or central hypersensitivity in Fmr1 KO mice. Paradoxically, the locomotor hyperactivity and deficits in sensorimotor learning and startle responses characteristic of Fmr1 KO mice were ameliorated by reducing BNDF, suggesting changes in simultaneously and in parallel working hippocampus-dependent and striatum-dependent systems. Furthermore, the obesity normally seen in Bdnf(+/-) mice was eliminated by the absence of fragile X mental retardation protein 1 (FMRP). Reduced BDNF decreased the survival of newborn cells in the ventral part of the hippocampus both in the presence and absence of FMRP. Since a short neurite phenotype characteristic of newborn cells lacking FMRP was not found in cells derived from double mutant mice, changes in neuronal maturation likely contributed to the behavioral phenotype. Our results show that the absence of FMRP modifies the diverse effects of BDNF on the FXS phenotype.  相似文献   

17.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

18.
19.
Previous studies have indicated that neonatal handling influences development of hypothalamic-pituitary-adrenal (HPA) control of corticosterone. In addition, corticosterone influences memory consolidation processes in contextual fear conditioning. Therefore, neonatal handling may affect hippocampal-dependent memory processes present in contextual fear conditioning by influencing the development of HPA control of corticosterone. To investigate the effects of neonatal handling on early learning, rat pups were either handled (15-min removal from home cage) on the first 15 days after birth or left undisturbed in their home cage. Handled rats and nonhandled rats were fear conditioned at 18, 21, or 30 days of age and then tested at two time points--24 h following conditioning and at postnatal day 45. Subsequently, at approximately postnatal day 60, rats were exposed to restraint stress and corticosterone levels were assessed during restraint and recovery. Handled and nonhandled rats did not differ significantly in their freezing response immediately following footshock on the conditioning day. However, when tested for contextual fear conditioning at 24 h following conditioning and at postnatal day 45, handled rats showed more freezing behavior than nonhandled rats. When exposed to restraint stress, handled rats had a more rapid return of corticosterone to basal levels than nonhandled rats. These results indicate that neonatal handling enhances developmentally early memory processes involved in contextual fear conditioning and confirms previously reported effects of neonatal handling on HPA control of corticosterone.  相似文献   

20.
转录因子Egr-1参与长期性恐惧记忆和焦虑   总被引:1,自引:0,他引:1  
Ko SW  Ao HS  Mendel AG  Qiu CS  Wei F  Milbrandt J  Zhuo M 《生理学报》2005,57(4):421-432
锌指转录因子点Egr-1在将细胞外信号和胞内基因表达的变化相耦联过程中发挥重要的作用。海马和杏仁体是记忆形成和储存的两个主要的脑区。在海马和杏仁体中,Egr-1可被长时程增强(long-term potentiation,LTP)和学习过程上调。在Egr-1敲除小鼠上观察到晚时相声音恐惧记忆受损,而短时的痕迹和场景记忆却不受影响;另外,在Egr-1敲除小鼠上,用theta burst刺激杏仁体和听觉皮层所引起的突触增强被明显减弱或完全阻断。因此,我们的研究表明,转录因子Egr-1选择性地在晚时相听觉恐惧记忆中发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号