首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
2006年,首次报道在体外简单的转录因子就可以使体细胞重编程为多能性细胞。自从这项技术诞生以来,人们为改善诱导多能干细胞(iPSCs)技术做出了巨大努力,发展各种方法用于将重编程因子导入体细胞制备诱导多能干细胞(iPSCs)。诱导多能干细胞(iPSCs)技术彻底改变了人类对疾病发病机制的探索和药物开发的进程。本文简述了诱导多能干细胞的来源及诱导策略、近年来iPSCs在疾病建模、药物研发、再生医学等方面的应用,同时探讨了该技术当前存在的问题,并对未来进行了展望。  相似文献   

5.
6.
Induced pluripotent stem cells(i PSCs) have been the focal point of ever increasing interest and scrutiny as they hold the promise of personalized regenerative medicine. However, creation of i PSCs is an inefficient process that requires forced expression of potentially oncogenic proteins. In order to unlock the full potential of i PSCs, both for basic and clinical research, we must broaden our search for more reliable ways of inducing pluripotency in somatic cells. This review surveys an area of reprogramming that does not receive as much focus, barriers to reprogramming, in the hope of stimulating new ideas and approaches towardsdeveloping safer and more efficient methods of reprogramming. Better methods of i PSC creation will allow for more reliable disease modeling, better basic research into the pluripotent state and safer i PSCs that can be used in a clinical setting.  相似文献   

7.
8.
Mammalian cells can be reprogrammed into induced pluripotent stem cells (iPSCs), a valuable tool for in vitro disease modeling and regenerative medicine. These applications demand for iPSCs devoid of reprogramming factor transgenes, but current procedures for the derivation of transgene-free iPSCs are inefficient and cumbersome. Here, we describe a new approach for the simple derivation of transgene-free iPSCs by the sequential use of two DNA recombinases, C31 Integrase and Cre, to control the genomic insertion and excision of a single, non-viral reprogramming vector. We show that such transgene-free iPSCs exhibit gene expression profiles and pluripotent developmental potential comparable to genuine, blastocyst-derived embryonic stem cells. As shown by a reporter iPSC line for the differentiation into midbrain dopaminergic neurons, the dual recombinase approach offers a simple and efficient way to derive transgene-free iPSCs for studying disease mechanisms and cell replacement therapies.  相似文献   

9.
Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.  相似文献   

10.
11.
Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.  相似文献   

12.
13.
Metabolism is vital to every aspect of cell function, yet the metabolome of induced pluripotent stem cells (iPSCs) remains largely unexplored. Here we report, using an untargeted metabolomics approach, that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells, and that is characterized by changes in metabolites involved in cellular respiration. Examination of cellular bioenergetics corroborated with our metabolomic analysis, and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency. Interestingly, the bioenergetics of various somatic cells correlated with their reprogramming efficiencies. We further identified metabolites that differ between iPSCs and ESCs, which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming. Our findings are the first to globally analyze the metabolome of iPSCs, and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency, and in evaluating iPSC and ESC equivalence.  相似文献   

14.
Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this increased characterization of the cytoskeleton in pluripotent stem cells will allow for the better understanding and design of stem cell-based therapies.  相似文献   

15.

Background

Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.

Methodology

Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina''s Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.

Conclusions

This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.  相似文献   

16.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.  相似文献   

17.
诱导性多能干细胞(Induced pluripotent stem cells, iPSCs)是采用特定转录因子,将体细胞重编程为具有多能性的干细胞。iPSCs已成功由多种体细胞诱导出来,不仅具有发育多能性还能避免胚胎干细胞(Embryonic stem cells, ESCs)的伦理道德问题,已成为生命科学领域不可或缺的研究工具,具有广阔的应用前景。但获得高质量、遗传稳定的iPSCs是当前亟须解决的问题。文章对iPSCs重编程机制和遗传稳定性的研究进展进行了综述,以期为提高iPSCs的诱导效率、降低诱导成本、掌握iPSCs质量控制的关键点提供参考,从而推进多能性干细胞临床应用的发展。  相似文献   

18.
Current strategies to monitor reprogramming into induced pluripotent stem cells (iPSCs) are limited in that they rely on the recognition of advanced stage biomarkers or they involve the transduction of genetically-modified cells. These limitations are particularly problematic in high-throughput screenings where cell availability, low cost and a rapid experimental protocol are critical issues. Herein we report the application of a pluripotent stem cell fluorescent probe (i.e. CDy1) as a reporter for the rapid screening of chemicals in reprogramming iPSCs. CDy1 stains early-stage iPSCs at 7dpi as well as matured iPSCs; hence it can partially overcome the slow kinetics of the reprogramming process. As a proof of concept, we employed a CDy1-based screening in 384 well-plates to examine the effect of newly synthesized hydroxamic acid derivatives in reprogramming mouse fibroblasts transduced with Oct4, Sox2 and Klf-4 without c-Myc. One compound (1-26) was identified as a reprogramming enhancer by 2.5-fold and we confirmed that 1-26 behaves as a histone deacetylase (HDAC) inhibitor. The successful identification of novel small molecules enhancing the generation of iPSCs by means of a rapid and simple protocol demonstrates the suitability of this CDy1-based screening platform for the large scale and high-throughput evaluation of iPSC modulators.  相似文献   

19.
《Biophysical journal》2020,118(9):2086-2102
Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell’s microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells’ microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.  相似文献   

20.
Induced pluripotent stem cells (iPSCs) are considered patient‐specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c‐Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical‐grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non‐integrating viral and non‐viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号