首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

2.
Clinico-epidemiological analysis and etiological verification of the outbreak of respiratory infection among school children in a rural district of the Khabarovsk territory, registered in spring 1997, were made. According to clinical signs, one-third of the patients had whooping cough, while the rest of the children exhibited the signs of respiratory infection with the symptoms of longering bronchitis. A half of the children had not been vaccinated against whooping cough, as they had been given injections of adsorbed DT vaccine with reduced antigen content. Etiologically, the diagnosis of whooping cough was confirmed in 57% of the patients with 47.4% of them having Bordetella pertussis monoinfection and 52.6% having mixed infection, mainly in combination with chlamydiosis. Whooping cough took an abnormal course under these circumstances. Treatment with erythromycin produced a good effect.  相似文献   

3.
In a previous study, using BALB/c mice, we found that while diphtheria (D), tetanus (T) and whooping cough (Pw, whole-cell Bordetella pertussis) immunization induces a Th1/Th2 tetanus response and memory T cells able to proliferate in response to in vitro stimulation with B. pertussis, DTPa immunization induces a Th2 tetanus immune response and no memory T cells that recognize B. pertussis as stimulus. Considering that a pro-inflammatory cytokine production is not necessary for protection against tetanus and therefore should be avoided, an alternative DTP immunization schedule with minimal Pw exposure was assessed in order to obtain a Th2 tetanus response and a Th1 pertussis response. BALB/c mice were primed with DT vaccine at day 0, with Pw vaccine at day 14 and boosted with DTPa vaccine at days 21 and 28. A control group was inoculated with saline. Antibodies against B. pertussis surface antigens, tetanus and diphtheria toxoids were produced by mice. Spleen cells stimulated in vitro with B. pertussis produced IL-6 and IFNgamma. Only IL-5 was produced by cells in response to tetanus toxoid stimulation. These results are in line with the low IgG1/IgG2a ratio for pertussis antibodies compared with those corresponding to tetanus and diphtheria. The immunization protocol presented herein succeeded in producing tetanus and pertussis immune responses of Th2 and Th1 type, respectively. In contrast to previous results obtained with DTPw immunization, no IL-12 production was observed. Our findings provide direct evidence that an immunization protocol with an interval of 14 days between DT and Pw primings, followed by DTPa boosters, can induce appropriate immune responses against DTP vaccine antigens.  相似文献   

4.
Whooping cough (pertussis) is a highly contagious respiratory infection caused by Bordetella pertussis. Although availability of effective pertussis vaccines reportedly decreases the incidence of the disease, B. pertussis circulation in populations has not been eliminated. Thus, it is necessary to find new protein candidates with greater immune protective capacities than the currently available acellular pertussis vaccines. In this study, iron superoxide dismutase (FeSOD) gene (sodB) was cloned, expressed in Escherichia coli and recombinant FeSOD protein thence purified. The recombinant protein (rFeSOD) was formulated with aluminum hydroxide (Alum) or monophosphoryl lipid A (MPLA) and injected intraperitoneally to immunize mice, after which IgG1, IgG2a and IFN‐γ titers were measured to assess humoral and cellular responses, respectively, to these immunizations. The extent of bacterial colonization in lungs of intranasally challenged mice was determined 5, 8 and 14 days post‐challenge. IgG1 and IgG2a responses were significantly stronger in mice that had been immunized with rFeSOD–MPLA than in those that had received rFeSOD‐Alum (P < 0.05). Additionally, IgG2a titers were higher in mice vaccinated with recombinant protein FeSOD (rFeSOD) formulated with MPLA, especially after the second immunization. Immunization with rFeSOD–MPLA also provided a modest, but significant decrease in bacterial counts in lungs of mice (P < 0.05). Antigen specific‐IFN‐γ responses were significantly stronger in the group vaccinated with rFeSOD–MPLA, which could account for the lower bacterial counts. These findings suggest that rFeSOD protein formulated with MPLA has potential as an acellular pertussis vaccine candidate component.  相似文献   

5.
《BMJ (Clinical research ed.)》1973,1(5848):259-262
The efficacy of pertussis vaccines was investigated in 33 areas in the United Kingdom from November 1966 until April 1968 inclusive. Bordetella pertussis was isolated from 1,293 persons, but there were only six isolations of B. papapertussis. Among vaccinated contacts under 5 years in homes in which B. pertussis was isolated 52% developed paroxysmal cough. The corresponding attack rate among unvaccinated contacts was 69%. These findings suggest that much of the pertussis vaccine in use for five or six years before 1968 was not very effective. However, vaccine from one producer was more effective than vaccine from another. Of the cultures of B. pertussis identified 89% were serotype 1, 3 and only about 9% were serotype 1, 2, 3. Serotype 1, 2, 3 was isolated much more frequently from unvaccinated than from vaccinated children, but some cultures identified as type 1, 2, 3 were found on re-examination to contain colonies of type 1, 3. Virological investigations were made in some areas during the first year of the study. Of the wide variety of viruses identified adenovirus and parainfluenza virus were the most common groups. Virus isolation rates were similar in patients and symptomless contacts, but B. pertussis was isolated far more often from patients than from symptomless contacts. The evidence suggests that B. pertussis remained the major cause of whooping cough in the U.K.  相似文献   

6.
The genotypic and serotypic analysis of B. pertussis strains isolated from the nasopharynx of children with whooping cough in the years 1968 and 1995-98 and B. pertussis vaccine strains was the aim of this study. The genotyping of the examined strains was done by electrophoretic division of DNA in pulsed field. The 3 types (A, B, C) and 2 subtypes (A1 and A2) of DNA restriction patterns were determined for the B. pertussis strains isolated in 1968. The 2 types (D and E) and 10 subtypes (D1-D10) of DNA restriction patterns were identified for B. pertussis strains from the years 1995-98. The DNA restriction patterns of B. pertussis strains isolated in the years 1968 and 1995-98 were not identical what was the evidence of the fact that in the sixties and nineties whooping cough was caused by different B. pertussis clones. The different DNA profiles were also observed for vaccine strains as well as for vaccine strains and current isolates. Differences in DNA patterns of vaccine strains and B. pertussis strains isolated in the years 1995-98 indicated a relationship possibility in some cases while lack of relationship between these strains in other cases. Serotyping of the examined B. pertussis strains was performed by the agglutination method with the sera against B. pertussis agglutinogens 1, 2 and 3. Most strains--15 (75%) isolated in 1968 possessed only agglutinogens 1 and 3. Serotype 1, 2, 3 was most frequently observed among isolates from the years 1995-98. This study indicates the expediency of periodical change of B. pertussis vaccine strains in the aspect of whooping cough resurgence in the years 1994-95 and 1997-98.  相似文献   

7.
The currently used pertussis vaccines are highly efficacious; however, neonates are susceptible to whooping cough up to the sixth month. In agreement, DTP-immunized neonate mice were not protected against intracerebral challenge with Bordetella pertussis. Neonate mice immunized with either DTP or a recombinant-BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin do not show a humoral immune response against PT. On the other hand, rBCG-Pertussis induces higher PT-specific IFN-gamma production and an increase in both IFN-gamma(+) and TNF-alpha(+)-CD4(+)-T cells than the whole cell pertussis vaccine and confers protection against a lethal intracerebral challenge with B. pertussis.  相似文献   

8.
Immunological surveys in African and Asian countries showed a different degree of herd immunity in the respective countries and the circulation of various types of B. pertussis. Antibodies against B. parapertussis, the second aertiological agent of whooping cough, were found in all countries in all age groups. Before planning any vaccination program, attention should be paid to the vaccine concerning the content of all types of B. pertussis, as was shown in the results of the testing of different vaccines used in Mongolia and Algeria. It is also possible to estimate the age limit for vaccination and thus economic use of the vaccine. The contemporary state of reporting whooping cough cases is very unsatisfactory.  相似文献   

9.
Nontoxic analogs of pertussis toxin (PT), produced by in vitro mutagenesis of the tox operon, are immunogenic and protective against infection by Bordetella pertussis. The moderate levels of PT production by B. pertussis, however, make it the limiting antigen in the formulation of multicomponent, acellular, recombinant whooping cough vaccines. To increase production of the highly detoxified Lys9Gly129 PT analog by B. pertussis, additional copies of the mutated tox operon were integrated into the bacterial chromosome at the tox or fha locus by unmarked allelic exchange. Recombinant strains produced in this way secreted elevated levels of the PT analog proportional to gene dosage. The strains were stable during 10-liter fermentations, and yields of up to 80 mg of PT analog per liter were obtained under production-scale conditions. The nontoxic analog was purified and shown to be indistinguishable from material obtained from a B. pertussis strain that contained only a single copy of the toxLys9Gly129 operon. Such strains are therefore suitable for large-scale, industrial production of an acellular whooping cough vaccine containing a genetically detoxified PT analog.  相似文献   

10.
Nontoxic analogs of pertussis toxin (PT), produced by in vitro mutagenesis of the tox operon, are immunogenic and protective against infection by Bordetella pertussis. The moderate levels of PT production by B. pertussis, however, make it the limiting antigen in the formulation of multicomponent, acellular, recombinant whooping cough vaccines. To increase production of the highly detoxified Lys9Gly129 PT analog by B. pertussis, additional copies of the mutated tox operon were integrated into the bacterial chromosome at the tox or fha locus by unmarked allelic exchange. Recombinant strains produced in this way secreted elevated levels of the PT analog proportional to gene dosage. The strains were stable during 10-liter fermentations, and yields of up to 80 mg of PT analog per liter were obtained under production-scale conditions. The nontoxic analog was purified and shown to be indistinguishable from material obtained from a B. pertussis strain that contained only a single copy of the toxLys9Gly129 operon. Such strains are therefore suitable for large-scale, industrial production of an acellular whooping cough vaccine containing a genetically detoxified PT analog.  相似文献   

11.
B. pertussis is a causative agent of whooping cough (pertussis) in humans. Despite wide-scale vaccination in many countries, there is serious concern about pertussis as a re-emerging disease. Re-emergence of pertussis may be explained by several factors: the short duration of protection by the currently available acellular pertussis vaccine, an increase in asymptomatic adult carriers and expansion of strains with certain antigenic variations which are not covered by currently available vaccines. To develop safer and more efficacious vaccines which confer more prolonged protection, researchers are focusing on identification and characterization of new virulence factors. One candidate for protective antigens is the type III secretion system and its secreted proteins.  相似文献   

12.
The recombinant modified (attenuated) bacteria A. pertussis were constructed. These bacteria contained knockout mutation of the dnt gene and produced nontoxic pertussis toxin derivative. The immunological properties of the mutant bacteria B. pertussis strain KS were studied. The recombinant bacteria B. pertussis strain KS were found to be devoid of dermonecrotic toxin activity, conserved the structure of the mutant dnt gene in condition of cultivation on selective growth media, and long-term survival in laboratory animal organism. Intranasal immunization of mice with living bacteria B. pertussis, attenuated strain KS provided protection of animals from virulent strains of the pertussis. The efficiency of the protection was comparable with protection efficiency provided by standard corpuscular pertussis vaccine OSO-3.  相似文献   

13.
Bordetella holmesii is recognized as the third causative agent of pertussis (whooping cough) in addition to Bordetella pertussis and Bordetella parapertussis. Pertussis caused by B. holmesii is not rare around the world. However, to date, there is no effective vaccine against B. holmesii. We examined the protective potency of pertussis vaccines available in Japan and vaccines prepared from B. holmesii. A murine model of respiratory infection was exploited to evaluate protective potency. No Japanese commercial pertussis vaccines were effective against B. holmesii. In contrast, a wBH vaccine and an aBH vaccine prepared from B. holmesii were both protective. Passive immunization with sera from mice immunized with aBH vaccine established protection against B. holmesii, indicating that B. holmesii‐specific serum antibodies might play an important role in protection. Immuno‐proteomic analysis with sera from mice immunized with aBH vaccine revealed that the sera recognized a BipA‐like protein of B. holmesii. An aBH vaccine prepared from a BipA‐like protein‐deficient mutant strain did not have a protective effect against B. holmesii. Taken together, our results suggest that the BipA‐like protein plays an important role in the protective efficacy of aBH vaccine.  相似文献   

14.
Two candidate DNA vaccines based on the proteins CFP10 and CFP21 encoded by regions of difference (RDs) of Mycobacterium tuberculosis were evaluated individually and in multivalent combination with the immunodominant protein Ag85B for induction of protective immune responses against experimental tuberculosis. Experimental DNA vaccines induced substantial levels of cell-mediated immune responses as indicated by marked lymphocyte proliferation, significant release of the Th1 cytokines IFN-gamma and IL-12 (p40), and predominant cytotoxic T cell activity. High levels of antigen-specific IgG1 and IgG2a antibodies observed in the sera of immunized mice depicted strong humoral responses generated by DNA vaccine constructs. The multivalent combination of three DNA vaccine constructs induced maximal T cell and humoral immune responses. All the experimental vaccines imparted significant protection against challenge with M. tuberculosis H(37)Rv (in terms of colony-forming unit reduction in lungs and spleen) as compared to vector controls. The level of protection exhibited by multivalent DNA vaccine formulation was found to be equivalent to that of Mycobacterium bovis BCG observed both at 4 and 8 weeks post-challenge. These results show the protective potential of the multivalent DNA vaccine formulation used in this study.  相似文献   

15.
Rotaviruses (RV) are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD) gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV) vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS) sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα) cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12) and 2-3 fold lower anti-inflammatory (IL10) cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented) pigs had significantly higher serum IL12 (PID2) and IFNγ (PID6) compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more severe rotavirus infection and lower HRV vaccine efficacy.  相似文献   

16.
《BMJ (Clinical research ed.)》1975,3(5985):687-688
In 1974 it was recommended that pertussis vaccine should continue to be offered in a triple vaccine together with diphtheria and tetanus vaccines. Further data on the prevalence of whooping cough and the incidence of adverse reactions have shown no reason to change this policy; the hazard of whooping cough remains greater than that of immunization.  相似文献   

17.
Abstract Immunization of Balb/c and C57B1/6 mice with the pertussis toxin (Ptx), purified from the culture supernatant of Bordetella pertussis (the whooping cough bacillus) resulted in different immune reactions in these genetically different strains of mice. Antibody responses to Ptx were detected only in Balb/c, whereas both Balb/c and C57B1/6 produced anti-Ptx antibodies when immunized with detoxified Ptx. Also, delayed-type hypersensitivity reactions differ strongly according to the use of Ptx or detoxified Ptx as eliciting antigen.  相似文献   

18.
A virulent clone of Bordetella pertussis, injected intranasally into C57B1/6 or Balb/c mice, induced a respiratory tract infection that mimicked the infectious process of whooping cough. The density of the inoculum influenced the kinetics of in vivo bacterial growth, as well as the associated leucocytosis, which were of equivalent intensity in both strains of mice. Convalescing mice became resistant to re-infection, but not to the effects of the leucocytosis-promoting factor of the pertussis toxin. Prominent immune response, associated with acquired resistance, was a delayed type hypersensitivity (DTH) reaction, the intensity of which depended upon the genotype of the mice when the eliciting antigen contained the pertussis toxin in a biologically active form. Intranasal infection of congenic mice may represent an improved quantitative test for reproducible measurement of virulence and immunogenicity of B. pertussis.  相似文献   

19.
Bordetella pertussis causes whooping cough, a severe and prolonged respiratory disease that results inhas high morbidity and mortality rates, particularly in developing countries. The number incidence of whooping cough cases is increasing in many countries despite high vaccine coverage. Causes for the re‐emergence of the disease include the limited duration of protection conferred by the acellular pertussis vaccines (aP)s and pathogenic adaptations that involve antigenic divergence from vaccine strains. Therefore, current vaccines therefore need to be improved. In the present study, we focused on five autotransporters: namely SphB1, BatB, SphB2, Phg, and Vag8, which were previously found to be expressed by B. bronchiseptica during the course of infection in rats and examined their protective efficiencies as vaccine antigens. The passenger domains of these proteins were produced in recombinant forms and used as antigens. An intranasal murine challenge assay showed that immunization with a mixture of SphB1 and Vag8 (SV) significantly reduced bacterial load in the lower respiratory tract and a combination of aP and SV acts synergistically in effects of conferring protection against B. pertussis infection, implying that these antigens have potential as components to for improvinge th the currently available acellular pertussis vaccine.
  相似文献   

20.
Abstract Antibody-binding epitopes on the Fim2 and Fim3 proteins of Bordetella pertussis , which have been associated with the induction of protective antibody, were located using sera from 12 patients with whooping cough and 4 vaccinated children. Fifteen epitopes were identified on both Fim2 and Fim3. In each case 9 were recognised by serum antibody from 11 or more infected patients. Epitopes associated with the highest IgG activity were not the same as those associated with the highest IgA activity. None of the vaccinated patients had detectable IgA. Most epitopes showed little or no evidence of serotype-specific responses, suggesting this is largely directed towards conformational epitopes. The reactivity of all but two epitopes was confirmed in an ELISA with patients' sera in which epitopes were re-synthesised as free soluble peptides. The short linear epitopes described may therefore be useful in the development of serodiagnostic assays but are unlikely vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号