共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 30% of human tumors sequenced to date harbor mutations in the POLB gene that are not present in matched normal tissue. Many mutations give rise to enzymes that contain non-synonymous single amino acid substitutions, several of which have been found to have aberrant activity or fidelity and transform cells when expressed. The DNA Polymerase β (Pol β) variant Asp160Asn (D160N) was first identified in a gastric tumor. Expression of D160N in cells induces cellular transformation as measured by hyperproliferation, focus formation, anchorage-independent growth and invasion. Here, we show that D160N is an active mutator polymerase that induces complex mutations. Our data support the interpretation that complex mutagenesis is the underlying mechanism of the observed cellular phenotypes, all of which are linked to tumorigenesis or tumor progression. 相似文献
2.
XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks 总被引:5,自引:0,他引:5
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage. 相似文献
3.
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity. 相似文献
4.
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases. 相似文献
5.
Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase β in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. 相似文献
6.
Yasushi Dobashi Yoshinobu Kubota Taro Shuin Soichiro Torigoe Masahiro Yao Masahiko Hosaka 《Human genetics》1995,95(4):389-390
Recently, evidence has accumulated that mutations in DNA repair genes might be associated with certain steps in carcinogenesis. The DNA polymerase gene is one of the DNA repair genes, and mutations in it have been detected in 83% of human colorectal cancers. To assess the involvement of polymerase gene mutations in the development of human prostate cancers, we performed sequence analyses of human DNA samples. Unexpectedly, we found six regions that were polymorphic. This information should be taken into consideration at the time of sequence analysis of the DNA polymerase gene.s 相似文献
7.
Alberto Zambrano Verónica García-Carpizo María Esther Gallardo Raquel Villamuera Maria Ana Gómez-Ferrería Angel Pascual Nicolas Buisine Laurent M. Sachs Rafael Garesse Ana Aranda 《The Journal of cell biology》2014,204(1):129-146
There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. 相似文献
8.
A gene coding for a DNA polymerase β from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpolβ), using the information from eight peptides of the T. cruzi β-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-polβ with mitochondrial polβ and polβ-PAK from other trypanosomatids was between 68–80% and 22–30%, respectively. Miranda Tc-polβ protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata polβ, which suggests that the TcI-polβ plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells. 相似文献
9.
Peter Sykora Magdalena Misiak Yue Wang Somnath Ghosh Giovana S. Leandro Dong Liu Jane Tian Beverly A. Baptiste Wei-Na Cong Boris M. Brenerman Evandro Fang Kevin G. Becker Royce J. Hamilton Soumya Chigurupati Yongqing Zhang Josephine M. Egan Deborah L. Croteau David M. Wilson III Mark P. Mattson Vilhelm A. Bohr 《Nucleic acids research》2015,43(2):943-959
10.
Jean-Paul Lasserre Jacqueline Plissonneau Christophe Velours Marc Bonneu Simon Litvak Patricia Laquel Michel Castroviejo 《Biochimie》2013
DNA replication occurs in various compartments of eukaryotic cells such as the nuclei, mitochondria and chloroplasts, the latter of which is used in plants and algae. Replication appears to be simpler in the mitochondria than in the nucleus where multiple DNA polymerases, which are key enzymes for DNA synthesis, have been characterized. In mammals, only one mitochondrial DNA polymerase (pol γ) has been described to date. However, in the mitochondria of the yeast Saccharomyces cerevisiae, we have found and characterized a second DNA polymerase. To identify this enzyme, several biochemical approaches such as proteinase K treatment of sucrose gradient purified mitochondria, analysis of mitoplasts, electron microscopy and the use of mitochondrial and cytoplasmic markers for immunoblotting demonstrated that this second DNA polymerase is neither a nuclear or cytoplasmic contaminant nor a proteolytic product of pol γ. An improved purification procedure and the use of mass spectrometry allowed us to identify this enzyme as DNA polymerase α. Moreover, tagging DNA polymerase α with a fluorescent probe demonstrated that this enzyme is localized both in the nucleus and in the organelles of intact yeast cells. The presence of two replicative DNA polymerases may shed new light on the mtDNA replication process in S. cerevisiae. 相似文献
11.
Dawit Kidane Alan S Jonason Timothy S Gorton Ivailo Mihaylov Jing Pan Scott Keeney Dirk G de Rooij Terry Ashley Agnes Keh Yanfeng Liu Urmi Banerjee Daniel Zelterman Joann B Sweasy 《The EMBO journal》2010,29(2):410-423
We have shown earlier that DNA polymerase β (Pol β) localizes to the synaptonemal complex (SC) during Prophase I of meiosis in mice. Pol β localizes to synapsed axes during zygonema and pachynema, and it associates with the ends of bivalents during late pachynema and diplonema. To test whether these localization patterns reflect a function for Pol β in recombination and/or synapsis, we used conditional gene targeting to delete the PolB gene from germ cells. We find that Pol β-deficient spermatocytes are defective in meiotic chromosome synapsis and undergo apoptosis during Prophase I. We also find that SPO11-dependent γH2AX persists on meiotic chromatin, indicating that Pol β is critical for the repair of SPO11-induced double-strand breaks (DSBs). Pol β-deficient spermatocytes yielded reduced steady-state levels of the SPO11-oligonucleotide complexes that are formed when SPO11 is removed from the ends of DSBs, and cytological experiments revealed that chromosome-associated foci of replication protein A (RPA), RAD51 and DMC1 are less abundant in Pol β-deficient spermatocyte nuclei. Localization of Pol β to meiotic chromosomes requires the formation of SPO11-dependent DSBs. Taken together, these findings strongly indicate that Pol β is required at a very early step in the processing of meiotic DSBs, at or before the removal of SPO11 from DSB ends and the generation of the 3′ single-stranded tails necessary for subsequent strand exchange. The chromosome synapsis defects and Prophase I apoptosis of Pol β-deficient spermatocytes are likely a direct consequence of these recombination defects. 相似文献
12.
To examine base excision repair (BER) capacity in the context of living cells, we developed and applied a plasmid-based reporter assay. Non-replicating plasmids containing unique DNA base lesions were designed to express luciferase only after lesion repair had occurred, and luciferase expression in transfected cells was measured continuously during a repair period of 14 h. Two types of DNA lesions were examined: uracil opposite T reflecting repair primarily by the single-nucleotide BER sub-pathway, and the abasic site analogue tetrahydrofuran (THF) opposite C reflecting repair by long-patch BER. We found that the repair capacity for uracil-DNA in wild type mouse fibroblasts was very strong, whereas the repair capacity for THF-DNA, although strong, was slightly weaker. Repair capacity in DNA polymerase β (Pol β) null cells for uracil-DNA and THF-DNA was reduced by approximately 15% and 20%, respectively, compared to that in wild type cells. In both cases, the repair deficiency was fully complemented in Pol β null cells expressing recombinant Pol β. The effect of inhibition of poly(ADP-ribose) polymerase (PARP) activity on repair capacity was examined by treatment of cells with the inhibitor 4-amino-1,8-naphthalimide (4-AN). PARP inhibition decreased the repair capacity for both lesions in wild type cells, and this reduction was to the same level as that seen in Pol β null cells. In contrast, 4-AN had no effect on repair in Pol β null cells. The results highlight that Pol β and PARP function in the same repair pathway, but also suggest that there is repair independent of both Pol β and PARP activities. Thus, before the BER capacity of a cell can be predicted or modulated, a better understanding of Pol β and PARP activity-independent BER pathways is required. 相似文献
13.
It has been a decade since the discovery of human DNA polymerase ι (polι). Since that time, the enzyme has been characterized extensively at the biochemical level, but the cellular function of polι remains enigmatic. Recent studies on polι have, however, provided much needed insights into its biological role(s) and suggest that the enzyme plays important functions in protecting humans from the deleterious consequences of exposure to both oxidative- and ultraviolet light-induced DNA damage. 相似文献
14.
The specialised DNA polymerase μ (pol μ) affects a sub-class of immunoglobulin genes rearrangements and haematopoietic development in vivo. These effects appear linked to double-strand breaks (DSBs) repair, but it is still unclear how and to what extent pol μ intervenes in this process. Using high-resolution quantitative imaging of DNA damage in irradiated wild-type and pol μ?/? mouse embryonic fibroblasts (MEFs) we show that lack of pol μ results in delayed DSB repair kinetics and in persistent DNA damage. DNA damage triggers cellular senescence, and this response is thought to suppress cancer. Independent investigations either report or not a proliferative decline for MEFs lacking pol μ. Here we show pronounced senescence in pol μ?/? MEFs, associated with high levels of the tumor-suppressor p16INK4A and the DNA damage response kinase CHK2. Importantly, cellular senescence is induced by culture stress and exacerbated by low doses of irradiation in pol μ?/? MEFs. We also found that low doses of irradiation provoke delayed immortalisation in MEFs lacking pol μ. Pol μ?/? MEFs thus exhibit a robust anti-proliferative defence in response to irreparable DNA damage. These findings indicate that sub-optimal DSB repair, due to the absence of an auxiliary DNA damage repair factor, can impact on cell fitness and thereby on cell fate. 相似文献
15.
The balance between exonuclease and polymerase activities promotes DNA synthesis over degradation when nucleotides are correctly added to the new strand by replicative B-family polymerases. Misincorporations shift the balance toward the exonuclease site, and the balance tips back in favor of DNA synthesis when the incorrect nucleotides have been removed. Most B-family DNA polymerases have an extended β-hairpin loop that appears to be important for switching from the exonuclease site to the polymerase site, a process that affects fidelity of the DNA polymerase. Here, we show that DNA polymerase ε can switch between the polymerase site and exonuclease site in a processive manner despite the absence of an extended β-hairpin loop. K967 and R988 are two conserved amino acids in the palm and thumb domain that interact with bases on the primer strand in the minor groove at positions n−2 and n−4/n−5, respectively. DNA polymerase ε depends on both K967 and R988 to stabilize the 3′-terminus of the DNA within the polymerase site and on R988 to processively switch between the exonuclease and polymerase sites. Based on a structural alignment with DNA polymerase δ, we propose that arginines corresponding to R988 might have a similar function in other B-family polymerases. 相似文献
16.
A. A. Shtygasheva E. A. Belousova N. I. Rechkunova N. A. Lebedeva O. I. Lavrik 《Biochemistry. Biokhimii?a》2008,73(11):1207-1213
The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage. 相似文献
17.
Baranovskiy AG Lada AG Siebler HM Zhang Y Pavlov YI Tahirov TH 《The Journal of biological chemistry》2012,287(21):17281-17287
Translesion DNA synthesis is an important branch of the DNA damage tolerance pathway that assures genomic integrity of living organisms. The mechanisms of DNA polymerase (Pol) switches during lesion bypass are not known. Here, we show that the C-terminal domain of the Pol ζ catalytic subunit interacts with accessory subunits of replicative DNA Pol δ. We also show that, unlike other members of the human B-family of DNA polymerases, the highly conserved and similar C-terminal domains of Pol δ and Pol ζ contain a [4Fe-4S] cluster coordinated by four cysteines. Amino acid changes in Pol ζ that prevent the assembly of the [4Fe-4S] cluster abrogate Pol ζ function in UV mutagenesis. On the basis of these data, we propose that Pol switches at replication-blocking lesions occur by the exchange of the Pol δ and Pol ζ catalytic subunits on a preassembled complex of accessory proteins retained on DNA during translesion DNA synthesis. 相似文献
18.
Chung-Chun Wu Ming-Tsan Liu Yu-Ting Chang Chih-Yeu Fang Sheng-Ping Chou Hsin-Wei Liao Kuan-Lin Kuo Shih-Lung Hsu Yi-Ren Chen Pei-Wen Wang Yu-Lian Chen Hsin-Ying Chuang Chia-Huei Lee Ming Chen Wun-Shaing Wayne Chang Jen-Yang Chen 《Nucleic acids research》2010,38(6):1932-1949
Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells. 相似文献
19.
Gui WJ Lin SQ Chen YY Zhang XE Bi LJ Jiang T 《Biochemical and biophysical research communications》2011,(2):272-277
The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. 相似文献
20.
Ming Chang Glenna C. Burmer Joann Sweasy Lawrence A. Loeb Susanne Edelhoff Christine M. Disteche Chang-En Yu Leojean Anderson Junko Oshima Jun Nakura Tetsuro Miki Kouzin Kamino Toshio Ogihara Gerard D. Schellenberg George M. Martin 《Human genetics》1994,93(5):507-512
Werner syndrome (WS) is a rare autosomal recessive disorder of humans characterized by the premature onset and accelerated rate of development of several major age-related disorders. An aberration in DNA replication or repair is suggested by the evidence of genome instability. Since the structural gene for DNA polymerase maps within the region of the WS mutation on the short arm of chromosome 8 and is involved in both DNA repair and DNA replication, we evaluated its candidacy as the WS gene. Several independent lines of evidence did not support that hypothesis: (1) activity gels showed normal enzyme activity and electrophoretic mobility; (2) nucleotide sequence analysis of the entire coding region failed to reveal mutations (although indicated mistakes in the published sequence); (3) single-strand conformation polymorphism (SSCP) and heteroduplex analyses failed to reveal evidence of mutations in the promoter region; (4) a newly discerned polymorphism failed to reveal evidence of homozygosity by descent in a consanguineous patient; and 5) fluorescence in situ hybridization (FISH) analysis placed the DNA polymerase gene centromeric to D8S135 at 8p11.2 and thus beyond the region of peak LOD scores for WS. 相似文献