首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular markers are effective tools to investigate genetic diversity for resistance to pathogens. NBS (nucleotide-binding site) profiling is a PCR (polymerase chain reaction)-based approach to studying genetic variability that specifically targets chromosome regions containing R-genes and R-gene analogues. We used NBS profiling to measure genetic diversity among 58 accessions of durum wheat. Mean polymorphism rates detected using MseI and AluI as restriction enzymes were 34% and 22%, respectively. Mean number of polymorphisms per enzyme-primer combination was equal to 23.8 +/- 5.9, ranging from 13 to 31 polymorphic bands. In total, 96 markers over 190 indicated a good capacity to discriminate between accessions (the polymorphic index content ranging from 0.30 to 0.50). The results obtained with NBS profiling were compared with simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) data of the same set of accessions. The genetic distances computed with 190 NBS profiling markers were in close agreement with those obtained with AFLP and SSR markers (r = 0.73 and 0.76, respectively). Our results indicate that NBS profiling provides an effective means to investigate genetic diversity in durum wheat.  相似文献   

2.
An Iranian National Quince collection containing 40 quince genotypes, originating from six distinct geographic areas, was screened using 15 SSR markers developed originally for apple and pear genomes. Overall, 13 markers exhibited polymorphism, with an average of 5.36 putative alleles per locus and a mean PIC value of 0.76. An UPGMA analysis divided the quince genotypes into five major clusters. The same results were obtained when the principal coordinates were plotted. The assignment test successfully allocated 83% of individuals into their place of origin. These results agree somewhat with the geographic origin of the quince accessions, and we conclude that geographic isolation leads to considerable genetic differentiation among Iranian quince collections. A significant ratio of transferability with a mean of 87.86% was measured, and we deduced that STMS markers derived from pear and apple have enough potential to detect polymorphism and differentiation in quince.  相似文献   

3.
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.  相似文献   

4.
5.
Food and nutritional security continue to be the issues of concern in developing countries like ours. Exploring the reservoir of high potential unexplored genetic resources could address the world’s food and nutritional insecurity. The availability of diverse data and the population structure of any crop germplasm is a valuable genetic resource for discovering genes that can help achieve food and nutritional stability. We used seven ISSR and seven SSR markers to investigate diversity among 63 buckwheat genotypes, including landraces from India''s northwestern Himalayas. Various parameters such as percent polymorphism, PIC, resolving power, and marker index was used to evaluate the inequitable efficacy of these markers. We foundthat both marker systems are effective in detecting polymorphism in buckwheat germplasm. Seven ISSRs produced 55 polymorphic bands, while seven SSRs produced 32bands. When compared to ISSRs, SSRs had a greater average PIC value (0.43) than that of (0.36). ISSRs, on the other hand, had a resolving power of (4.38) compared to (1.42) for SSRs. The hierarchical cluster analysis dendrogram divided genotypes into three major clusters. We found that both marker systems were equally accurate in grouping buckwheat genotypes according to their geographical origins. Using 7 ISSR and 7 SSR markers, the model-based STRUCTURE analysis established a population with two sub-populations that correspond to species-based groupings. Within the population, there was a high level of genetic diversity. These results have consequences for both buckwheat breeding and conservation efforts.Keyword: Buckwheat, SSR, ISSR, Genetic diversity, Population structure  相似文献   

6.
Sequence-related amplified polymorphism (SRAP) was used to assess the genetic diversity of 63 cultivated, wild, and ornamental pomegranate genotypes from five different geographical regions of Iran. A total of 250 fragments were amplified using 13 primer combinations; among these, 133 bands (53?%) were polymorphic. The average PIC value was 0.28 over all PCs. The genetic distance among genotypes ranged from 0.10 to 0.37 with an average of 0.24. Cluster analysis using the neighbor-joining (NJ) method suggested there are close relationships between ornamental and some wild genotypes. Although AMOVA results revealed significant differences in the genetic diversity among the regions (P?=?0.0048), the genetic variation was mainly caused by variation of intra regions. The results indicated low genetic differentiation (Fst?=?0.025) and high gene flow (Nm?=?2.28) among regions. These results confirmed that SRAP markers could be powerful tools and an effective marker system for determining the genetic diversity and population genetic structure of the pomegranate.  相似文献   

7.
Inter-simple sequence repeat (ISSR) markers were used to analyze genetic diversity and relatedness of 15 germplasms of Fagopyrum tataricum. Samples representing 75 individuals were collected from a range of altitudes in the Western Himalaya. The 13 ISSR primers revealed 98.1% polymorphism among populations, whereas average polymorphism was extremely low (2.18%) within populations. The coefficient of population differentiation was 0.9750, with limited gene flow (N m) of 0.0128. The average PIC value of the ISSR markers was high (0.812), with a marker ratio of 0.65 and marker index of 6.66. The genetic diversity of F. tataricum significantly correlated with altitude and gene diversity, Shannon’s index, and the percentage of polymorphic bands. The genetic diversity among populations showed broad genetic base and provided a developmental strategy for crop improvement.  相似文献   

8.
Genetic diversity and interrelationships among 31 lentil genotypes were evaluated using 10 Inter-Simple Sequence Repeat (ISSR) and 10 directed amplification of minisatellite DNA region (DAMD) primers. A total of 43 and 48 polymorphic bands were amplified by ISSR and DAMD markers, respectively. Average polymorphism information content (PIC) for ISSR and DAMD markers were 0.37 and 0.41, respectively. All 31 lentil genotypes could be distinguished by ISSR markers into three groups and by DAMD markers into two groups. Various molecular markers show a different efficiency for evaluating DNA polymorphism in lentil and indicate that the patterns of variation are clearly influenced by the genetic marker used. Comparatively, the genetic diversity of examined lentil genotypes by two different marker techniques (ISSR and DAMD) was high and indicated that ISSR and DAMD are effective and promising marker systems for fingerprinting in lentil and give useful information on its genetic relationships.  相似文献   

9.
Genetic differences between 20 Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight (FHB) and 4 wheat lines highly susceptible to FHB were evaluated by means of microsatellite markers, in order to select suitable parents for gene mapping studies. Thirty-nine out of 40 microsatellite markers (97.5%) were polymorphic among the 24 wheat genotypes. A total of 276 alleles were detected at the 40 microsatellite loci. The number of alleles per locus ranged from 1 to 16, with an average of 6.9 alleles. Among these microsatellite loci, the largest polymorphism information content (PIC) value was 0.914 (GWM484), while the lowest PIC value was 0 (GWM24). The mean genetic similarity index among the 24 genotypes was 0.419, ranging from 0.103 to 0.673. Clustering analysis indicated that the highly susceptible synthetic wheat line RSP was less genetically related to and more divergent from the Chinese highly resistant landraces. These results were useful in the identification of suitable parents for the development of mapping populations for tagging the FHB resistance genes among these Chinese wheat landraces.  相似文献   

10.
In bread wheat, 21 anchored simple sequence repeat (SSR) primer pairs detecting SSR length polymorphism and 42 anchored SSR primers detecting microsatellite‐anchored fragment length polymorphisms (MFLPs) are reported. Eight bread wheat genotypes were used for detecting polymorphism. The number of alleles in SSR analysis ranged from two to six, with a mean of 2.9 alleles per SSR. The number of polymorphic bands in MFLP ranged from two to 40, with a mean of 12.74 polymorphic bands/primer combination, the SSRs with CT/GA motifs giving the highest level of polymorphism (a mean of 18.37 bands). The average value of polymorphic information content (PIC) was 0.473 for SSRs and 0.061 for MFLP.  相似文献   

11.
Selective Amplification of Microsatellite Polymorphic Loci (SAMPL) technology was used in bread wheat for the first time for a study of genetic diversity, genotype identification and gene tagging. The diversity studies involved 55 wheat genotypes and two SAMPL primer pairs (SAMPL-6 and SAMPL-7, each with a M-CAG primer), which together gave 43 polymorphic bands out of a total of 87 SAMPL bands. The average polymorphic information content (PIC) of SAMPL primers was 0.221 and that of SAMPL markers was 0.264. The marker index of SAMPL markers was 9.61. The genetic similarity (GS) coefficients for 1,485 pairs of genotypes ranged from 0.35 to 0.96 with an average of 0.65. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm, which corresponded well with the results of principal component analysis (PCA). From a total of 55 genotypes, 54 could be distinguished using the SAMPL banding patterns of both primers. For gene tagging, 568 bands from a total of 1,185 SAMPL bands detected polymorphism between each of the three pairs of parents differing for grain protein content (GPC), pre-harvest sprouting tolerance (PHST) and grain weight (GW). An association of six bands with GPC, of seven bands with PHST and four bands with GW was observed using bulked segregant analysis (BSA). Received: 5 April 2001 / Accepted: 17 May 2001  相似文献   

12.
香蕉EST-SSRs标记的开发与应用   总被引:10,自引:0,他引:10  
王静毅  陈业渊  刘伟良  武耀廷 《遗传》2008,30(7):933-940
从NCBI搜索的2 282条香蕉EST中, 发掘出含有SSR的EST序列110条, 共有122个SSR位点, 检出率为5.3%。SSR位点可分为37种重复单元, 平均长度为20 bp, 其中二、三核苷酸重复单元的SSR占主导地位, 分别占总SSR的33.1%和47.6%。GA和GAA是二、三核苷酸中的优势重复类型, 分别占二、三核苷酸重复类型的75.7%和36.0%; 其他重复类型所占比例均不足10%, 而四核苷酸重复类型最少, 为4.0%。设计的63对EST-SSRs引物中, 有41对EST-SSRs引物对巴西蕉基因组DNA能扩增出产物, 占总引物数的65.1%。应用进一步筛选出的重复性好、多态性高的19对引物对49个香蕉品种(系)进行PCR扩增。每对引物扩增的多态性带数目为4~12个, 平均7.58个; 引物多态信息量变化范围为0.3572~0.8744, 平均0.7324。在相似系数为0.63的水平可将49个品种聚为2个类群:一类为含B基因组香蕉品种; 另一类为不含B基因组的香蕉品种, 表明EST-SSR引物可以应用于香蕉品种资源分类的研究。  相似文献   

13.
14.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

15.
Genetic diversity among seven Saudi tomato landraces collected from different regions of the country was assessed using SDS-PAGE and molecular (sequence-related amplified polymorphism- SRAP) markers. A total of 19 alternative protein bands with different mobility rates were identified within a molecular weight range of 9.584–225?KDa, with 53% polymorphism. Specific protein bands were observed in the “Hail 548” and “Qatif 565” landraces. Genetic similarity based on Jaccard’s coefficient ranged from 0.53 to 1.00, with an average of 0.72. For molecular evaluation, 143 amplicons (fragments) were generated using 27 SRAP primer pair combinations, of which 88 were polymorphic across all the landraces. The PIC values ranged from 0.46 to 0.90, with an average of 0.76. All landraces showed an average of 0.66 similarity coefficient value. The UPGMA dendrogram supported by principal coordinate analysis (PCoA) revealed clusters of the landraces that almost corresponded to their geographical origin. Thus, seed storage protein profiling based on SDS-PAGE and SRAP markers can efficiently be used to assess genetic variability among tomato germplasms. The information obtained in the analysis will be of great interest in the management of ex situ collections for utilization in breeding programs or for direct use in quality markets.  相似文献   

16.
Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05504, NBS-09711, NBS-07688, NBS-03509 and EST-SSR-04241) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.  相似文献   

17.
Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.  相似文献   

18.
Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to study the DNA polymorphism in elite blackgram genotypes. A total of 25 random and 16 ISSR primers were used. Amplification of genomic DNA of the 18 genotypes, using RAPD analysis, yielded 104 fragments that could be scored, of which 44 were polymorphic, with an average of 1.8 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from two (OPA-13) to nine (OPK-4) and varied in size from 200 bp to 2,500 bp. Percentage polymorphism ranged from 16.6% (OPK-7) to a maximum of 66.6% (OPE-5, OPH-2, and OPK-8), with an average of 42.7%. The 16 ISSR primers used in the study produced 101 bands across 18 genotypes, of which 55 were polymorphic. The number of amplified bands varied from two (ISSR 858) to ten (ISSR 810), with a size range of 200–2,200 bp. The average numbers of bands per primer and polymorphic bands per primer were 6.3 and 3.4, respectively. Percentage polymorphism ranged from 25% (ISSR 885) to 100% (ISSR 858), with an average percentage polymorphism of 57.5% across all the genotypes. The 3-anchored primers based on poly(GA) and poly(AG) motifs produced high average polymorphisms of 54.98% and 58.32%, respectively. ISSR markers were more efficient than the RAPD assay, as they detected 57.4% polymorphic DNA markers in Vigna mungo as compared to 42.7% for RAPD markers. The Mantel test between the two Jaccards similarity matrices gave r =0.32, showing low correlation between RAPD- and ISSR-based similarities. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in ISSR and combined data of RAPD and ISSR.  相似文献   

19.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

20.
A set of 81 new microsatellite markers for Carica papaya L. previously identified by data mining using freely available sequence information from Genbank were tested for polymorphism using 30 germplasm accessions from the Papaya Germplasm Bank (PGM) at Embrapa Mandioca e Fruticultura Tropical (CNPMF) and 18 landraces. The data were used to estimate pairwise genetic distances between the genotypes. A neighbor-joining based dendrogram was used to define clusters and infer possible genetic structuring of the collection. Most microsatellites were polymorphic (73%), with an observed number of alleles per locus ranging from one to eleven. The levels of observed and expected heterozygosity for 51 polymorphic loci varied from 0.00 to 0.85 and from 0.08 to 0.82, averaging 0.19 and 0.59, respectively. Forty-four percent of microsatellites showed polymorphism information content (PIC) higher than 0.50. The compound microsatellites seem to be more informative than dinucleotide and trinucleotide repeats in average alleles per locus and PIC. Among dinucleotides, AG/TC or GA/CT repeat motifs exhibited more informativeness than TA/AT, GT/CA and TG/AC repeat motifs. The neighbor-joining analysis based on shared allele distance could differentiate all the papaya accessions and landraces as well as differences in their genetic structure. This set of markers will be useful for examining parentage, inbreeding and population structure in papaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号