首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.  相似文献   

2.
Insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis (Bt) are widely used as environmentally friendly insecticides. As the only known Cry protein with insecticidal activity against Locusta migratoria manilensis, a locust subspecies that causes extensive destruction of crops, the Cry7Ca1 protein from Bt strain BTH‐13 identified in our previous study is of particular interest to locust prevention and control. However, the three‐dimensional structure of Cry7Ca1 toxin (the active form of the Cry7Ca1 protein) and the mechanisms of the Cry7Ca1 insecticidal specificity remain largely elusive. Here, we report a 2.3 Å crystal structure of the Cry7Ca1 toxin and carry out a systematic comparison of all available Cry toxins structures. A cluster of six loops in Cry toxin domain II, named Apex here, are the most variable structural elements and were documented to contribute in insecticidal specificity. The Cry7Ca1 toxin Apex loops are different from those of other Cry toxins in length, conformation, and sequence. Electrostatic potential analysis further revealed that Cry7Ca1 is the only structure‐available Cry toxin that does not have a high contrast of surface electrostatic potentials in the Apex. We further suggest that the L1/L2 loops in the center of the Cry7Ca1 Apex may be worthy of attention in future efforts to unravel the Cry7Ca1 insecticidal specificity as they exhibit unique features not found in the corresponding regions of other Cry toxins. Our work highlights the uniqueness of the Apex in the Cry7Ca1 toxin and may assist exploration of the insecticidal mechanism of the Cry7Ca1 against Locusta migratoria manilensis.  相似文献   

3.
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.  相似文献   

4.
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins.  相似文献   

5.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with (125)I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [K(com)] = 1.1 nM) for (125)I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for (125)I-Cry1Ab binding sites, though the K(com) values ranged from 179 to 304 nM. Cry1Ab competed for (125)I-Cry1Ac binding sites (K(com) = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the (125)I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

6.
Theoretically, the activity of AB-type toxin molecules such as the insecticidal toxin (Cry toxin) from B. thuringiensis, which have one active site and two binding site, is improved in parallel with the binding affinity to its receptor. In this experiment, we tried to devise a method for the directed evolution of Cry toxins to increase the binding affinity to the insect receptor. Using a commercial T7 phage-display system, we expressed Cry1Aa toxin on the phage surface as fusions with the capsid protein 10B. These recombinant phages bound to a cadherin-like protein that is one of the Cry1Aa toxin receptors in the model target insect Bombyx mori. The apparent affinity of Cry1Aa-expressing phage for the receptor was higher than that of Cry1Ab-expressing phage. Phages expressing Cry1Aa were isolated from a mixed suspension of phages expressing Cry1Ab and concentrated by up to 130,000-fold. Finally, random mutations were made in amino acid residues 369–375 in domain 2 of Cry1Aa toxin, the mutant toxins were expressed on phages, and the resulting phage library was screened with cadherin-like protein-coated beads. As a result, phages expressing abnormal or low-affinity mutant toxins were excluded, and phages with high-affinity mutant toxins were selected. These results indicate that a method combining T7 phage display with selection using cadherin-like protein-coated magnetic beads can be used to increase the activity of easily obtained, low-activity Cry toxins from bacteria.  相似文献   

7.
Cry toxins from Bacillus thuringiensis are used for insect control. Their primary action is to lyse midgut epithelial cells. In this review we will summarize recent findings on the Cry toxin-receptor interaction and the role of receptor recognition in their mode of action. Cry toxins interact sequentially with multiple receptors. In lepidopteran insects, Cry1A monomeric toxins interact with the first receptor and this interaction triggers oligomerization of the toxins. The oligomer then interacts with second receptor inducing insertion into membrane microdomains and larval death. In the case of mosquitocidal toxins, Cry and Cyt toxins play a part. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin resistance. Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin.  相似文献   

8.
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins.  相似文献   

9.
Structure of Cry2Aa suggests an unexpected receptor binding epitope   总被引:17,自引:0,他引:17  
BACKGROUND: Genetically modified (GM) crops that express insecticidal protein toxins are an integral part of modern agriculture. Proteins produced by Bacillus thuringiensis (Bt) during sporulation mediate the pathogenicity of Bt toward a spectrum of insect larvae whose breadth depends upon the Bt strain. These transmembrane channel-forming toxins are stored in Bt as crystalline inclusions called Cry proteins. These proteins are the active agents used in the majority of biorational pesticides and insect-resistant transgenic crops. Though Bt toxins are promising as a crop protection alternative and are ecologically friendlier than synthetic organic pesticides, resistance to Bt toxins by insects is recognized as a potential limitation to their application. RESULTS: We have determined the 2.2 A crystal structure of the Cry2Aa protoxin by multiple isomorphous replacement. This is the first crystal structure of a Cry toxin specific to Diptera (mosquitoes and flies) and the first structure of a Cry toxin with high activity against larvae from two insect orders, Lepidoptera (moths and butterflies) and Diptera. Cry2Aa also provides the first structure of the proregion of a Cry toxin that is cleaved to generate the membrane-active toxin in the larval gut. CONCLUSIONS: The crystal structure of Cry2Aa reported here, together with chimeric-scanning and domain-swapping mutagenesis, defines the putative receptor binding epitope on the toxin and so may allow for alteration of specificity to combat resistance or to minimize collateral effects on nontarget species. The putative receptor binding epitope of Cry2Aa identified in this study differs from that inferred from previous structural studies of other Cry toxins.  相似文献   

10.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

11.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

12.
Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.  相似文献   

13.
Role of receptors in Bacillus thuringiensis crystal toxin activity.   总被引:10,自引:0,他引:10  
Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death.  相似文献   

14.
Cry46Ab is a Cry toxin derived from Bacillus thuringiensis TK-E6. Cry46Ab is not significantly homologous to other mosquitocidal Cry or Cyt toxins and is classified as an aerolysin-type pore-forming toxin based on structural similarity. In this study, the potency of Cry46Ab was assessed for its potential application to mosquito control. A synthetic Cry46Ab gene, cry46Ab-S1, was designed to produce recombinant Cry46Ab as a glutathione-S-transferase fusion in Escherichia coli. Recombinant Cry46Ab showed apparent toxicity to Culex pipiens larvae, with a 50% lethal dose of 1.02 μg/ml. In an artificial lipid bilayer, Cry46Ab activated by trypsin caused typical current transitions between open and closed states, suggesting it functions as a pore-forming toxin similar to other Cry and Cyt toxins. The single-channel conductance was 103.3 ± 4.1 pS in 150 mM KCl. Co-administration of recombinant Cry46Ab with other mosquitocidal Cry toxins, especially the combination of Cry4Aa and Cry46Ab, resulted in significant synergistic toxicity against C. pipiens larvae. Co-administration of multiple toxins exhibiting different modes of action is believed to prevent the onset of resistance in insects. Our data, taken in consideration with the differences in its structure, suggest that Cry46Ab could be useful in not only reducing resistance levels but also improving the insecticidal activity of Bt-based bio-insecticides.  相似文献   

15.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for 125I-Cry1Ab binding sites, though the Kcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

16.
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K+ ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K+ ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.  相似文献   

17.
Jurat-Fuentes JL  Adang MJ 《Biochemistry》2006,45(32):9688-9695
Genetic knockout of the BtR4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to resistance against Cry1Ac toxin from Bacillus thuringiensis. However, the functional Cry1Ac receptor role of this protein has not been established. We previously proposed HevCaLP as a shared binding site for B. thuringiensis (Bt) Cry1A and Cry1Fa toxins in the midgut epithelium of H. virescens larvae. Considering that Cry1Ac and Cry1Fa are coexpressed in second-generation transgenic cotton for enhanced control of Heliothine and Spodoptera species, our model suggests the possibility of evolution of cross resistance via alteration of HevCaLP. To test whether HevCaLP is a Cry1Ac and Cry1Fa receptor, HevCaLP was transiently expressed on the surface of Drosophila melanogaster Schneider 2 (S2) cells. Expressed HevCaLP bound [(125)I]Cry1A toxins under native (dot blot) and denaturing (ligand blot) conditions. Affinity pull-down assays demonstrated that Cry1Fa does not bind to HevCaLP expressed in S2 cells or in solubilized brush border membrane proteins. Using a fluorescence-based approach, we tested the ability of expressed HevCaLP to mediate toxicity of Cry1A and Cry1Fa toxins. Cry1A toxins killed S2 cells expressing HevCaLP, whereas Cry1Fa toxin did not. Our results demonstrate that HevCaLP is a functional Cry1A but not Cry1Fa receptor.  相似文献   

18.
Insecticidal activity and receptor binding properties of Bacillus thuringiensis toxins to yellow and striped rice stem borers (Sciropophaga incertulas and Chilo suppresalis, respectively) were investigated. Yellow stem borer (YSB) was susceptible to Cry1Aa, Cry1Ac, Cry2A, and Cry1C toxins with similar toxicities. To striped stem borer (SSB), Cry1Ac, Cry2A, and Cry1C were more toxic than Cry1Aa toxin. Binding assays were performed with (sup125)I-labeled toxins (Cry1Aa, Cry1Ac, Cry2A, and Cry1C) and brush border membrane vesicles (BBMV) prepared from YSB and SSB midguts. Both Cry1Aa and Cry1Ac toxins showed saturable, high-affinity binding to YSB BBMV. Cry2A and Cry1C toxins bound to YSB BBMV with relatively low binding affinity but with high binding site concentration. To SSB, both Cry1Aa and Cry1Ac exhibited high binding affinity, although these toxins are less toxic than Cry1C and Cry2A. Cry1C and Cry2A toxins bound to SSB BBMV with relatively low binding affinity but with high binding site concentration. Heterologous competition binding assays were performed to investigate the binding site cross-reactivity. The results showed that Cry1Aa and Cry1Ac recognize the same binding site, which is different from the Cry2A or Cry1C binding site in YSB and SSB. These data suggest that development of multitoxin systems in transgenic rice with toxin combinations which recognize different binding sites may be useful in implementing deployment strategies that decrease the rate of pest adaptation to B. thuringiensis toxin-expressing rice varieties.  相似文献   

19.
Pacheco S  Gómez I  Gill SS  Bravo A  Soberón M 《Peptides》2009,30(3):583-588
Cry1A toxins produced by Bacillus thuringiensis bind a cadherin receptor that mediates toxicity in different lepidopteran insect larvae. Insect cadherin receptors are modular proteins composed of three domains, the ectodomain formed by 9-12 cadherin repeats (CR), the transmembrane domain and the intracellular domain. Cry1A toxins interact with three regions of the Manduca sexta cadherin receptor that are located in CR7, CR11 and CR12 cadherin repeats. Binding of Cry1A toxin to cadherin induces oligomerization of the toxin, which is essential for membrane insertion. Also, it has been reported that cadherin fragments containing the CR12 region enhanced the insecticidal activity of Cry1Ab toxin to M. sexta and other lepidopteran larvae. Here we report that cadherin fragments corresponding to CR7 and CR11 regions also enhanced the activity of Cry1Ac and Cry1Ab toxin to M. sexta larvae, although not as efficient as the CR12 fragment. A single point mutation in the CR12 region (I1422R) affected Cry1Ac and Cry1Ab binding to the cadherin fragments and did not enhance the activity of Cry1Ab or Cry1Ac toxin in bioassays. Analysis of Cry1Ab in vitro oligomer formation in the presence of wild type and mutated cadherin fragments showed a correlation between enhancement of Cry1A toxin activity in bioassays and in vitro Cry1Ab-oligomer formation. Our data shows that formation of Cry1A toxin oligomer is in part responsible for the enhancement of Cry1A toxicity by cadherin fragments that is observed in vivo.  相似文献   

20.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号