首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.  相似文献   

2.
3.
Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism.  相似文献   

4.
Three genes coding for a type I R-M system related to the class C enzymes have been identified on the chromosome of Lactococcus lactis strain IL1403. In addition, plasmids were found that encode only the HsdS subunit that directs R-M specificity. The presence of these plasmids in IL1403 conferred a new R-M phenotype on the host, indicating that the plasmid-encoded HsdS is able to interact with the chromosomally encoded HsdR and HsdM subunits. Such combinational variation of type I R-M systems may facilitate the evolution of their specificity and thus reinforce bacterial resistance against invasive foreign unmethylated DNA.  相似文献   

5.
Distribution of orphan metabolic activities   总被引:2,自引:0,他引:2  
A significant fraction (30-40%) of known metabolic activities is currently orphan. Although orphan activities have been biochemically characterized, we do not know a single gene responsible for these reactions in any organism. The problem of orphan activities represents one of the major challenges of modern biochemistry. We analyze the distribution of orphans across biochemical space, through years of enzymatic characterization, and by biological organisms. We find that orphan metabolic activities have been accumulating for many decades. They are widely distributed across enzymatic functional space and metabolic network neighborhoods. Although orphans are relatively more abundant in less studied species, over half of orphan reactions have been experimentally characterized in more than one organism. Shrinking the space of orphan activities will likely require a close collaboration between computational and experimental laboratories.  相似文献   

6.
7.
Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform.  相似文献   

8.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

9.
Helicobacter pylori, Gram-negative, curved bacteria colonizing the human stomach, possess strain-specific complements of functional restriction-modification (R-M) systems. Restriction-modification systems have been identified in most bacterial species studied and are believed to have evolved to protect the host genome from invasion by foreign DNA. The large number of R-Ms homologous to those in other bacterial species and their strain-specificity suggest that H. pylori may have horizontally acquired these genes. A type IIs restriction-modification system, hpyIIRM, was active in two out of the six H. pylori strains studied. We demonstrate now that in most strains lacking M.HpyII function, there is complete absence of the R-M system. Direct DNA repeats of 80 bp flanking the hpyIIRM system allow its deletion, resulting in an "empty-site" genotype. We show that strains possessing this empty-site genotype and strains with a full but inactive hpyIIRM can reacquire the hpyIIRM cassette and functional activity through natural transformation by DNA from the parental R-M+ strain. Identical isolates divergent for the presence of an active HpyII R-M pose different restriction barriers to transformation by foreign DNA. That H. pylori can lose HpyII R-M function through deletion or mutation, and can horizontally reacquire the hpyIIRM cassette, is, in composite, a novel mechanism for R-M regulation, supporting the general hypothesis that H. pylori populations use mutation and transformation to regulate gene function.  相似文献   

10.
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.  相似文献   

11.
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.  相似文献   

12.
13.
14.

SUMMARY

Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.  相似文献   

15.
16.
17.
For large regions of many proteins, and even entire proteins, no homology to known domains or proteins can be detected. These sequences are often referred to as orphans. Surprisingly, it has been reported that the large number of orphans is sustained in spite of a rapid increase of available genomic sequences. However, it is believed that de novo creation of coding sequences is rare in comparison to mechanisms such as domain shuffling and gene duplication; hence, most sequences should have homologs in other genomes.To investigate this, the sequences of 19 complete fungi genomes were compared. By using the phylogenetic relationship between these genomes, we could identify potentially de novo created orphans in Saccharomyces cerevisiae. We found that only a small fraction, < 2%, of the S. cerevisiae proteome is orphan, which confirms that de novo creation of coding sequences is indeed rare. Furthermore, we found it necessary to compare the most closely related species to distinguish between de novo created sequences and rapidly evolving sequences where homologs are present but cannot be detected.Next, the orphan proteins (OPs) and orphan domains (ODs) were characterized. First, it was observed that both OPs and ODs are short. In addition, at least some of the OPs have been shown to be functional in experimental assays, showing that they are not pseudogenes. Furthermore, in contrast to what has been reported before and what is seen for older orphans, S. cerevisiae specific ODs and proteins are not more disordered than other proteins. This might indicate that many of the older, and earlier classified, orphans indeed are fast-evolving sequences. Finally, > 90% of the detected ODs are located at the protein termini, which suggests that these orphans could have been created by mutations that have affected the start or stop codons.  相似文献   

18.
Metallothioneins (MTs) constitutes a superfamily of highly conserved, low molecular weight polypeptides, which are characterized by high contents of cysteine (sulphur) and metals. As intracellular metal-binding proteins they play a significant role in the regulation of essential metals. The major isoforms of the protein (MT-I and MT-II) are induced by numerous stimuli and pathogens but most importantly their induction by metals is closely linked to the physiological metabolism of zinc and protection from the toxic affects following heavy metal exposure. Although the preservation of their genetic expression across animal phyla suggests that MTs may play an important physiological role, MT-I, II knock out (KO) mice survive to adulthood. In both central and peripheral nervous tissues, MT-I, II have neuroprotective roles, which are also induced by exogenous MT-I and/or MT-II treatment. Hence, MT-I, II may provide neurotherapeutic targets offering protection against neuronal injury and degeneration.  相似文献   

19.
Helicobacter pylori is a genetically diverse bacterial species, owing in part to its natural competence for DNA uptake that facilitates recombination between strains. Inter-strain DNA recombination occurs during human infection and the H. pylori genome is in linkage equilibrium worldwide. Despite this high propensity for DNA exchange, little is known about the factors that limit the extent of recombination during natural transformation. Here, we identify restriction-modification (R-M) systems as a barrier to transformation with homeologous DNA and find that R-M systems and several components of the recombination machinery control integration length. Type II R-M systems, the nuclease nucT and resolvase ruvC reduced integration length whereas the helicase recG increased it. In addition, we characterized a new factor that promotes natural transformation in H. pylori, dprB. Although free recombination has been widely observed in H. pylori, our study suggests that this bacterium uses multiple systems to limit inter-strain recombination.  相似文献   

20.
Analysis of restriction and modification activities in lactate-utilizing bacteria belonging to the Megasphaera elsdenii and Mitsuokella multiacida species revealed the presence of GATC-specific, MboI isospecific, restriction-modification (R-M) systems in all strains tested. While restriction endonucleases isolated from M. elsdenii strains were found to be sensitive to Dam methylation, enzymes from M. multiacida cleaved DNA irrespective of Dam methylation. The comparison of type II R-M systems specificities in three closely related lactate-utilizing ruminal bacterial species indicated complete lack of restriction and/or modification enzymes previously characterized from Selenomonas ruminantium in tested M. elsdenii and M. multiacida strains. R-M systems are believed to represent the main defense tool against phage infection. Based on the results of our experiments it could be assumed that M. elsdenii and M. multiacida use the different strategy for bacteriophage protection compared to S. ruminantium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号