共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Barthelemi S Robinet J Garnotel R Antonicelli F Schittly E Hornebeck W Lorimier S 《Journal of cellular biochemistry》2012,113(3):760-772
Matrix metalloproteinase (MMP) family proteins play diverse roles in many aspects of cellular processes such as osteoblastic differentiation. Besides, mechanical forces that occur in 3D collagen gel promote the osteoblastic phenotype and accelerate matrix mineralization. Although MMPs have been involved in bone differentiation, the proteolytic cascades triggered by mechanical forces are still not well characterized. In this study, we have investigated the contribution of both proteolytic cascades, MMP-3/MMP-1 and MMP-2/MMP-13/MT1-MMP in the differentiation of human osteoblasts cultured in a floating type I collagen lattice (FL) versus an attached collagen lattice (AL). Compared to AL, contraction of human osteoblasts-populated FL led to a fast (1 day) induction of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteoprotegerin (OPG), and Runx-2 expression. At day 4, osteocalcin (OC) overexpression preceded the formation of calcium-containing nodule formation as assessed by X-ray analyses. MMP-1 and MMP-3 were produced to similar extent by cells cultured in FL and AL, whereas contraction of collagen lattices triggered both mRNA overexpression of MMP-2, MMP-13, and MT1-MMP (i.e., MMP-14), and their activation as evidenced by Western blotting or zymographic analyses. Down-regulating MT1-MMP expression or activity either by siRNA transfection or supplementation of culture medium with TIMP-1 or TIMP-2 highlighted the contribution of that enzyme in OC, ALP, and OPG expression. MMP-2 and MMP-13 were more directly involved in BSP expression. So, these results suggest that the main proteolytic cascade, MMP-2/MMP-13/MT1-MMP, and more particularly, its initial regulator MT1-MMP is involved in osteoblast differentiation through mechanical forces. 相似文献
3.
4.
Bruce E. Rapuano Herman Singh Adele L. Boskey Stephen B. Doty Daniel E. MacDonald 《Journal of cellular biochemistry》2013,114(8):1917-1927
It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone‐implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium‐phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium‐phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X‐ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium‐and phosphorus‐containing particles on untreated and treated disks that were more numerous on fibronectin‐coated disks. These particles were observed earliest (1 week) on RFGD‐pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin‐coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. J. Cell. Biochem. 114: 1917–1927, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
5.
6.
TMCd1 is a cadmium inducible metallothionein (MT) gene. In the present study the TMCd1 gene of a ciliate protozoan has been expressed in E. coli and the function of the expressed TMCd1 protein as a metal-binding protein has been evaluated. The growth of E. coli cells expressing the GST fused TMCd1 proteins in the presence of cadmium metal clearly demonstrated the role of TMCd1 as a metal-binding protein. The metal accumulation experiments showed that the bacterial cells expressing the functional TMCd1 protein accumulated 19-fold more cadmium in contrast to control cells that lacked the TMCd1 protein expression. The results clearly demonstrate a physiological role of full length TMCd1 protein of a ciliate, expressed in E. coli, in cadmium metal sequestration and detoxification. 相似文献
7.
8.
Shishkin OV Shtamburg VG Zubatyuk RI Olefir DA Tsygankov AV Prosyanik AV Mazepa AV Kostyanovsky RG 《Chirality》2009,21(7):642-647
XRD studies of structure of N-acetoxy-N-methoxyurea and N,N-bis(methoxycarbonyl)-N-methoxyimide have revealed that in N-methoxy-N-X-ureas (X = OAc, Cl, OMe, N(+)C(5)H(5)) the additional shortening of N-OMe bond took place, which arising from an n(O(Me))-sigma*(N-X) anomeric orbital interaction. XRD studies of N-chloro-N-ethoxyurea crystal have revealed the presence of two kinds of anomeric nitrogen configuration in the O-N-Cl group in the form of a pyramidal configuration and a planar configuration for same 1-N nitrogen atom. XRD studies of N-4-chlorobenzoyloxy-N-ethoxyurea have revealed that the degree of pyramidality of the 1-N nitrogen in N-aroyloxy-N-alkoxyureas is tuned by orientation of benzoyl group with respect to the N-O bond, which in turn depends of size of N-alkoxy group. 相似文献
9.
10.
Tomas E. Meijome Jenna T. Baughman R. Adam Hooker Ying‐Hua Cheng Wendy A. Ciovacco Sanjeev M. Balamohan Trishya L. Srinivasan Brahmananda R. Chitteti Pierre P. Eleniste Mark C. Horowitz Edward F. Srour Angela Bruzzaniti Robyn K. Fuchs Melissa A. Kacena 《Journal of cellular biochemistry》2016,117(4):959-969
11.
Xuefeng Hu Ping Zhang Zhenjie Xu Hongdong Chen Xin Xie 《Journal of cellular biochemistry》2013,114(12):2729-2737
12.
13.
Peptides containing N(alpha)-methylamino acids exhibit interesting therapeutic profiles and are increasingly recognized as potentially useful therapeutics. Unfortunately, their synthesis is hampered by the high price and nonavailability of many N(alpha)-methylamino acids. An efficient and practical three-step procedure for selective N-methylation of peptides on solid support is described. The procedure was based on the well known solid-phase N-methylation of N(alpha)-arylsulfonyl peptides, which was improved by using dimethylsulfate and the less expensive DBU as base. Every step of the procedure, amine activation by an o-nitrobenzenesulfonyl group, selective N-methylation and removal of the sulfonamide group, was optimized in respect of time and economy. The described optimized three-step procedure is performed in 35 min without solvent changes, instead of 3 h. Tripeptides (Fmoc-Phe-MeXaa-Leu-OH) containing N-methylated common amino acids were also prepared using the optimized procedure to demonstrate its compatibility with these amino acids. The described procedure allows an efficient synthesis of N(alpha)-methylamino acid containing peptides in a very short time using Fmoc solid-phase peptide synthesis. 相似文献
14.
Gengxiang Zhao Zhongmin Jin Norma M. Allewell Mendel Tuchman Dashuang Shi 《Acta Crystallographica. Section F, Structural Biology Communications》2015,71(1):86-95
Structures of the catalytic N‐acetyltransferase (NAT) domain of the bifunctional N‐acetyl‐L‐glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N‐acetyl‐L‐glutamate (NAG) with and without an N‐terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N‐terminal His tag crystallized in space group P41212, with unit‐cell parameters a = b = 51.72, c = 242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N‐terminal His tag crystallized in space group P21, with unit‐cell parameters a = 63.48, b = 122.34, c = 75.88 Å, β = 107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N‐terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosaN‐acetytransferase (xfNAT) domain is very similar to that of human N‐acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K. 相似文献
15.
Sokho Kim Jeong‐Chae Lee Eui‐Sic Cho Jungkee Kwon 《Journal of cellular biochemistry》2013,114(11):2513-2521
16.
17.
18.
Noelle Ochotny Irina Voronov Celeste Owen Jane E. Aubin Morris F. Manolson 《Journal of cellular biochemistry》2013,114(12):2823-2833
19.
Kim HK Park KS Lee JS Kim JH Park DS Shin JW Yoon TR 《Journal of cellular biochemistry》2012,113(6):1833-1841
Osteoporosis is a reduction in skeletal mass due to an imbalance between bone formation and bone resorption. Therefore, the identification of specific stimulators of bone formation is of therapeutic significance in the treatment of osteoporosis. Salicylideneamino-2-thiophenol (Sal-2) consists of two benzene rings, has been reported to possess antioxidant activity, and is an effective remedy for fever and rheumatic diseases. However, until now the effects of osteoblastic bone formation by Sal-2 were unknown. In this study, we investigated the effects of Sal-2 on osteogenic differentiation of multipotent bone marrow stromal stem cells by alizarin red S staining for osteogenic differentiation, RT-PCR and western blot for alkaline phosphatase (ALP) activity and signaling pathways, FACS analysis and immunofluorescence staining for CD44 and CD51 expression, calcium assays, and immunofluorescence staining for signaling pathways. We found that Sal-2 enhanced the osteogenic differentiation of multipotent bone marrow stromal stem cells. Sal-2 treatment induced the expression and activity of ALP, and enhanced the levels of CD44 and CD51 expression as well as Ca2+ content, in multipotent bone marrow stromal stem cells. Moreover, we found that Sal-2-induced osteogenic differentiation and expression of osteogenesis-related molecules involve the activation of the MAPK and nuclear factor-κB pathways. Our findings provide insight into both the mechanism and effects of Sal-2 on osteogenic differentiation and demonstrate that Sal-2 may be a beneficial adjuvant in stimulating bone formation in osteoporotic diseases. 相似文献