首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Human osteosarcoma 143B cells were previously stably transfected with an αv integrin green flourescent protein (GFP) vector. 143B cells expressing αv integrin-GFP were transplanted orthotopically in the tibia of transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). The primary tumors acquired RFP-expressing stroma and were passaged orthotopically in the tibia in noncolored nude mice, which maintained the RFP stroma. The interaction of αv integrin-GFP expression in 143B cells with RFP-expressing host stromal cells was observed by confocal microscopy using the Olympus FV1000. Collagen fibers were imaged simultaneously in reflectance mode. The RFP-expressing stroma included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) which persisted even 3 weeks after passage to nontransgenic nude mice. CAFs expressing RFP were aligned between collagen fibers and cancer cells expressing αv integrin-GFP. Six weeks after transplantation, pulmonary metastases expressing αv integrin-GFP could be identified. TAMs expressing RFP accompanied metastasized osteosarcoma cells expressing αv integrin-GFP in the lung. The current study demonstrates the importance of αv integrin interaction with stromal elements in osteosarcoma.  相似文献   

2.
The tumor microenvironment (TME) is critical for tumor growth and progression. We have previously developed color‐coded imaging of the TME using a green fluorescent protein (GFP) transgenic nude mouse as a host. However, most donor sources of cell types appropriate for study in the TME are from mice expressing GFP. Therefore, a nude mouse expressing red fluorescent protein (RFP) would be an appropriate host for transplantation of GFP‐expressing stromal cells as well as double‐labeled cancer cells expressing GFP in the nucleus and RFP in the cytoplasm, thereby creating a three‐color imaging model of the TME. The RFP nude mouse was obtained by crossing non‐transgenic nude mice with the transgenic C57/B6 mouse in which the β‐actin promoter drives RFP (DsRed2) expression in essentially all tissues. In crosses between nu/nu RFP male mice and nu/+ RFP female mice, the embryos fluoresced red. Approximately 50% of the offspring of these mice were RFP nude mice. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. GFP‐expressing human cancer cell lines, including HCT‐116‐GFP colon cancer and MDA‐MB‐435‐GFP breast cancer were orthotopically transplanted to the transgenic RFP nude mice. These human tumors grew extensively in the transgenic RFP nude mouse. Dual‐color fluorescence imaging enabled visualization of human tumor–host interaction. The RFP nude mouse model should greatly expand our knowledge of the TME. J. Cell. Biochem. 106: 279–284, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
A major goal for in vivo biology is to develop models which can express multiple colors of fluorescent proteins in order to image many processes simultaneously in real time. Towards this goal, the cyan fluorescent protein (CFP) nude mouse was developed by crossing non‐transgenic nude mice with the transgenic CK/ECFP mouse in which the β‐actin promoter drives expression of CFP in almost all tissues. In crosses between nu/nu CFP male mice and nu/+ CFP female mice, approximately 50% of the embryos fluoresced blue. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescent signals of all internal organs which vary in intensity. Orthotopic implantation of XPA‐1 human pancreatic cancer cells expressing red fluorescent protein (RFP); or green fluorescent protein (GFP) in the nucleus and RFP in the cytoplasm, was performed in female nude CFP mice. Color‐coded fluorescence imaging of these human pancreatic cancer cells implanted into the bright blue fluorescent pancreas of the CFP nude mouse afforded novel insight into the interaction of the pancreatic tumor and the normal pancreas, in particular the strong desmoplastic reaction of the tumor. The naturally enhanced blue fluorescence of the pancreas in the CFP mouse serves as an ideal background for color‐coded imaging of the interaction of implanted cancer cells and the host. The CFP nude mouse will provide unique understanding of the critical interplay between the cancer cells and their microenvironment. J. Cell. Biochem. 107: 328–334, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Pancreatic cancer is a recalcitrant malignancy, partly due to desmoplastic stroma which stimulates tumor growth, invasion, and metastasis, and inhibits chemotherapeutic drug delivery. Transforming growth factor-β (TGF-β) has an important role in the formation of stromal desmoplasia. The present study describes the ability of color-coded intravital imaging to demonstrate the efficacy of a TGF-β inhibitor to target stroma in an orthotopic mouse model of pancreatic cancer. The BxPC-3 human pancreatic adenocarcinoma cell line expressing green fluorescent protein (GFP), which also has a high TGF-β expression level, was used in an orthotopic model in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). Fourteen mice were randomized into a control group (n = 7, vehicle, i.p., weekly, for 3 weeks) and a treated group (n = 7, SB431542 [TGF-β receptor type I inhibitor] 0.3 mg, i.p., weekly, for 3 weeks). Stromal cells expressing RFP and cancer cells expressing GFP were observed weekly for 3 weeks by real-time color-coded intravital imaging. The RFP fluorescence area from the stromal cells, relative to the GFP fluorescence area of the cancer cells, was significantly decreased in the TGF-β-inhibitor-treatment group compared to the control group. The present study demonstrated color-coded imaging in an orthotopic pancreatic-cancer cell-line mouse model can readily detect the selective anti-stromal-cell targeting of a TGF-β inhibitor.  相似文献   

5.
Using nestin‐driven green fluorescent protein (ND‐GFP) transgenic mice, we previously demonstrated an inter‐hair‐follicle blood vessel network that expresses ND‐GFP and appears to originate from ND‐GFP expressing hair‐follicle stem cells. We report here that angiogenesis of transplanted skin or healing wounds originates from this ND‐GFP‐expressing microvasculature network. ND‐GFP‐expressing blood vessels were visualized growing from the ND‐GFP‐expressing hair‐follicle stem cell area and re‐establishing the dermal microvasculature network after skin transplantation or wound healing. When the ND‐GFP stem cell area from the vibrissa (whisker) from ND‐GFP mice was transplanted to transgenic mice ubiquitously expressing RFP, we observed chimeric ND‐GFP‐RFP blood vessels, suggesting the joining of inter‐follicular blood vessel networks from the transplant and host. These observations suggest that the inter‐hair‐follicle blood‐vessel network contributes to skin transplant survival and wound healing. J. Cell. Biochem. 110: 80–86, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Different strains of Trypanosoma cruzi were transfected with an expression vector that allows the integration of green fluorescent protein (GFP) and red fluorescent protein (RFP) genes into the beta-tubulin locus by homologous recombination. The sites of integration of the GFP and RFP markers were determined by pulse-field gel electrophoresis and Southern blot analyses. Cloned cell lines selected from transfected epimastigote populations maintained high levels of fluorescent protein expression even after 6 months of in vitro culture of epimastigotes in the absence of drug selection. Fluorescent trypomastigotes and amastigotes were observed within Vero cells in culture as well as in hearts and diaphragms of infected mice. The infectivity of the GFP- and RFP-expressing parasites in tissue culture cells was comparable to wild type populations. Furthermore, GFP- and RFP-expressing parasites were able to produce similar levels of parasitemia in mice compared with wild type parasites. Cell cultures infected simultaneously with two cloned cell lines from the same parasite strain, each one expressing a distinct fluorescent marker, showed that at least two different parasites are able to infect the same cell. Double-infected cells were also detected when GFP- and RFP-expressing parasites were derived from strains belonging to two distinct T. cruzi lineages. These results show the usefulness of parasites expressing GFP and RFP for the study of various aspects of T. cruzi infection including the mechanisms of cell invasion, genetic exchange among parasites and the differential tissue distribution in animal models of Chagas disease.  相似文献   

7.
Fluorescent proteins have the properties of being very bright with high quantum yield and are available in many colors. Tumor-host models consist of transgenic mice expressing green fluorescent protein (GFP) in essentially all cells and tissues or expressing GFP selectively in specific tissues such as blood vessels. Particularly useful are the corresponding nude mice transgenic for GFP expression, as they can accept human tumors. When tumor cells expressing red fluorescent protein are implanted in mice expressing GFP, various types of tumor-host interactions can be observed, including those involving host blood vessels, lymphocytes, tumor-associated fibroblasts, macrophages, dendritic cells and others. The 'color-coded' tumor-host models enable imaging and therefore a deeper understanding of the host cells involved and their function in tumor progression. Approximately 4-8 weeks are needed for these procedures.  相似文献   

8.
Our laboratory has previously developed a tumor-targeting double-auxotrophic mutant of Salmonella typhimurium termed A1-R. The present report demonstrates that S. typhimurium A1-R destroys tumor blood vessels and this is enhanced in tumors with high vascularity. Red fluorescent protein (RFP)-expressing Lewis lung cancer cells (LLC-RFP) were transplanted subcutaneously in the ear, back skin and footpad of nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Color-coded in vivo imaging demonstrated that the LLC-RFP ear tumor had the highest cell density and the footpad tumor had the least. The ear tumor had more abundant blood vessels than that on the back or footpad. The tumor-bearing mice were treated with A1-R bacteria via tail-vein injection. Tumors in the ear were the earliest responders to bacterial therapy and hemorrhaged severely the day after A1-R administration. Tumors growing in the back were the second fastest responders to bacterial treatment and appeared necrotic 3 days after A1-R administration. Tumors growing in the footpad had the least vascularity and were the last responders to A1-R. Therefore, tumor vascularity correlated positively with tumor efficacy of A1-R. The present study suggests that bacteria efficacy on tumors involves vessel destruction which depends on the extent of vascularity of the tumor.Key words: tumor targeting bacteria, Salmonella typhimurium A1-R, Lewis lung carcinoma, RFP, GFP, nestin, nude mice  相似文献   

9.
In this report, we investigated the in vivo cell biology of cancer cells during immune rejection. The use of nestin-driven green fluorescent protein (ND-GFP) transgenic mice as hosts, in which nascent blood vessels express GFP, and implanted dual-color mouse mammary tumor 060562 (MMT) cells, in which the cytoplasm expresses red fluorescent protein (RFP) and the nuclei express GFP, allowed very important novel observations of angiogenesis and subcellular death pathways during immune rejection of a tumor. Nascent blood vessels did not form in the initially-growing mouse mammary tumor in ND-GFP immunocompetent mice. In contrast, in ND-GFP immunodeficient nude mice, numerous GFP-expressing nascent blood vessels grew into the tumor. The results suggest that insufficient nascent tumor angiogenesis was important in tumor rejection. During immune rejection, the cancer cells deformed their cytoplasm and nuclei, which were readily imaged by RFP and GFP, respectively. The nuclear membrane of the cancer cells ruptured, and chromatin extruded during partition of cytoplasm and nuclei. T lymphocytes infiltrated into the initially-growing tumor in the nestin-GFP transgenic immunocompetent mice. The cytotoxic role of the sensitized T lymphocytes was confirmed in vitro when they were co-cultured with MMT cells. The CD8a-positive lymphocytes attached to the cancer cells and caused nuclear condensation, deformation, and partition from their cytoplasm, similar to what occurred in vivo. The color-coded subcellular fluorescence-imaging model of immune rejection of cancer cells can provide a comprehensive system for further testing of immune-based treatment for cancer.  相似文献   

10.
A reporter plasmid pSRG has been developed which expresses red fluorescent protein (RFP) from a constitutive prokaryotic promoter within Pasteurella multocida B:2 and green fluorescent protein (GFP) from a constitutive eukaryotic promoter within mammalian cells. This construct has been used to determine the location and viability of the bacteria when moving from the extracellular environment into the intracellular compartment of mammalian cells. Invasion assays with embryonic bovine lung (EBL) cells and an attenuated AroA- derivative of Pasteurella multocida B:2 (strain JRMT12), harbouring the plasmid pSRG, showed that RFP-expressing bacteria could be detected intracellularly at 3 h post-invasion. At this stage, some EBL cells harbouring RFP-expressing bacteria were observed to express GFP simultaneously, indicating release of the plasmid into the intracellular environment. At 5 h post-invasion, more EBL cells were expressing GFP, while still harbouring RFP-expressing bacteria. Concurrently, some EBL cells were shown to express only GFP, indicating loss of viable bacteria within these cells. These experiments proved the functionality of the pSRG dual reporter system and the potential of P. multocida B:2 JRMT12 for bactofection and delivery of a DNA vaccine.  相似文献   

11.
In mammals, sexual fate is determined by the chromosomes of the male and female gametes during fertilization. Males (XY) or females (XX) are produced when a sperm containing a Y or X-chromosome respectively fertilizes an X-chromosome-containing unfertilized egg. However, sexing of preimplantation stage embryos cannot be conducted visually. To address this, transgenic male mouse models with the ubiquitously expressed green fluorescent protein (GFP) transgene on X- (X-GFP) or Y-chromosomes (Y-GFP) have been established. However, when crossed with wild-type females, sexing of the preimplantation stage embryos by observing the GFP signal is problematic in some cases due to X-inactivation, loss of Y-chromosome (LOY), or loss of transgene fluorescence. In this study, a mouse model with the ubiquitously expressed red fluorescent protein (RFP) transgene on the Y-chromosome was generated since RFP is easily distinguishable from GFP signals. Unfortunately, the ubiquitously expressed tdTomato RFP transgene on the Y-chromosome (Y-RFP) mouse showed the lethal phenotype after birth. No lethal phenotypes were observed when the mitochondrial locating signal N-terminal of tdTomato (mtRFP) was included in the transgene construct. Almost half of the collected fertilized eggs from Y-mtRFP male mice crossed with wild-type females had an RFP signal at the preimplantation stage (E1.5). Therefore, XY eggs were recognized as RFP-positive embryos at the preimplantation stage. Furthermore, 100% sexing was observed at the preimplantation stage using the X-linked GFP/Y-linked RFP male mouse. The established Y-mtRFP mouse models may be used to study sex chromosome related research.  相似文献   

12.
The vivid coloration of corals depends on fluorescent proteins that include cyan (CFP), green (GFP) and red (RFP) fluorescent proteins, and a non-fluorescent blue/purple chromoprotein. We examined how many genes encoding fluorescent proteins are present in the recently sequenced genome of the coral Acropora digitifera. Based on molecular phylogenetic analysis, we found one, five, one, and three candidate genes for CFP, GFP, RFP, and chromoprotein, respectively. The CFP and GFP genes are clustered in a ~80-kb-long genomic region, suggesting that they originated from an ancestral gene by tandem duplication. Since CFP and GFP possess the same chromophore, the gene clustering may provide the first genomic evidence for a common origin of the two proteins. Comparison between the fluorescent protein genes of closely related coral species suggests an expansion of chromoprotein genes in the A. digitifera genome, and of RFP genes in the A. millepora genome. The A. digitifera fluorescent protein genes are expressed during embryonic and larval developmental stages and in adults, suggesting that the genes play a variety of roles in coral physiology.  相似文献   

13.
Our laboratory has previously developed a tumor-targeting double-auxotrophic mutant of Salmonella typhimurium termed A1-R. The present report demonstrates that S. typhimurium A1-R destroys tumor blood vessels and this is enhanced in tumors with high vascularity. Red fluorescent protein (RFP)-expressing Lewis lung cancer cells (LLC-RFP) were transplanted subcutaneously in the ear, back skin, and footpad of nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Color-coded in vivo imaging demonstrated that the LLC-RFP ear tumor had the highest cell density and the footpad tumor had the least with the ear tumor having more abundant blood vessels than that on the back or footpad. The tumor-bearing mice were treated with A1-R bacteria via tail-vein injection. Tumors in the ear were the earliest responders to bacterial therapy and hemorrhaged severely the day after A1-R administration. Tumors growing in the back were the second fastest responders to bacterial treatment and appeared necrotic 3 days after A1-R administration. Tumors growing in the footpad had the least vascularity and were the last responders to A1-R. Therefore, tumor vascularity correlated positively with tumor efficacy of A1-R. The present study suggests that bacteria efficacy on tumors involved vessel destruction which depends on the extent of vascularity of the tumor.  相似文献   

14.
Two tissue-specific promoters were used to express both green fluorescent protein (GFP) and red fluorescent protein (RFP) in transgenic zebrafish embryos. One promoter (CK), derived from a cytokeratin gene, is active specifically in skin epithelia in embryos, and the other promoter (MLC) from a muscle-specific gene encodes a myosin light chain 2 polypeptide. When the 2 promoters drove the 2 reporter genes to express in the same embryos, both genes were faithfully expressed in the respective tissues, skin or muscle. When the 2 fluorescent proteins were expressed in the same skin or muscle cells under the same promoter, GFP fluorescence appeared earlier than RFP fluorescence in both skin and muscle tissues, probably owing to a higher detection sensitivity of GFP. However, RFP appeared to be more stable as its fluorescence steadily increased during development. Finally, F1 transgenic offspring were obtained expressing GFP in skin cells under the CK promoter and RFP in muscle cells under the MLC promoter. Our study demonstrates the feasibility of monitoring expression of multiple genes in different tissues in the same transgenic organism.  相似文献   

15.
目的建立系统性表达绿色荧光蛋白的裸鼠,接种人源肺癌细胞验证该模型是否具有免疫缺陷性,并观察双色荧光的成像效果。方法利用系统性表达绿色荧光蛋白的C57BL/6J小鼠与BALB/C裸小鼠多代杂交和互交,建立稳定表达绿色荧光蛋白的裸鼠。大体解剖观察胸腺生长情况,整体和器官荧光成像验证绿色荧光蛋白的表达情况。以2×106/只的剂量对其皮下腋下接种表达红色荧光蛋白的人类A549肺癌细胞(RFP-A549),通过观测肿瘤生长来验证模型的免疫缺陷性。同时,利用红色荧光标记的肿瘤和绿色宿主鼠,对双色的整体成像效果进行观测。结果构建出系统性表达绿色荧光蛋白的裸鼠,大体解剖可见胸腺缺失。在激发光的激发下,绿色荧光裸鼠全身发出清晰的绿色荧光,脑、心脏、肺脏、肝脏、肾脏,肠胃及胰腺等主要器官可见明显绿色荧光。接种RFP-A549细胞后,成瘤率达到100%,整体动物荧光成像表现出清晰的双色。结论本研究构建出的绿色荧光裸鼠,动物整体可以清晰地表达绿色荧光并具有免疫缺陷性  相似文献   

16.
The efficacy and specificity of small interfering RNAs (siRNAs) are largely dependent on the siRNA sequence. Since only empirical strategies are currently available for predicting these parameters, simple and accurate methods for evaluating siRNAs are needed. To simplify such experiments, target genes are often tagged with reporters for easier readout. Here, we used a bicistronic vector expressing a target gene and green fluorescent protein (GFP) to create a system in which the effect of an siRNA sequence was reflected in the GFP expression level. Cells were transduced with the bicistronic vector, expression vectors for siRNA and red fluorescent protein (RFP). Flow cytometric analysis of the transduced cells revealed that siRNAs for the target gene silenced GFP from the bicistronic vector, but did not silence GFP transcribed without the target gene sequence. In addition, the mean fluorescence intensities of GFP on RFP-expressing cells correlated well with the target gene mRNA and protein levels. These results suggest that this flow cytometry-based method enables us to quantitatively evaluate the efficacy and specificity of siRNAs. Because of its simplicity and effectiveness, this method will facilitate the screening of effective siRNA target sequences, even in high-throughput applications.  相似文献   

17.
Nonobese diabetic (NOD) mice carrying a transgenic TCR from an islet Ag-specific CD4 T cell clone, BDC2.5, do not develop diabetes. In contrast, the same transgenic NOD mice on the SCID background develop diabetes within 4 wk after birth. Using a newly developed mAb specific for the BDC2.5 TCR, we examined the interaction between diabetogenic T cells and regulatory T cells in NOD.BDC transgenic mice. CD4 T cells from NOD.BDC mice, expressing high levels of the clonotype, transfer diabetes to NOD.SCID recipients. In contrast, CD4 T cells expressing low levels due to the expression of both transgenic and endogenous TCR alpha-chains inhibit diabetes transfer. The clonotype-low CD4 T cells appear late in the ontogeny in the thymus and peripheral lymphoid organs, coinciding with resistance to cyclophosphamide-induced diabetes. These results demonstrate that diabetic processes in NOD.BDC mice are regulated by a balance between diabetogenic T cells and regulatory T cells. In the absence of specific manipulation, regulatory T cell function seems to be dominant and mice remain diabetes free. Understanding of mechanisms by which regulatory T cells inhibit diabetogenic processes would provide means to prevent diabetes development in high-risk human populations.  相似文献   

18.
The use of the green fluorescent protein (GFP) to label specific cell types and track gene expression in animal models, such as mice, has evolved to become an essential tool in biological research. Transgenic animals expressing genes of interest linked to GFP, either as a fusion protein or transcribed from an internal ribosomal entry site (IRES) are widely used. Enhanced GFP (eGFP) is the most common form of GFP used for such applications. However, a red fluorescent protein (RFP) would be highly desirable for use in dual‐labeling applications with GFP derived fluorescent proteins, and for deep in vivo imaging of tissues. Recently, a new generation of monomeric (m)RFPs, such as monomeric (m)Cherry, has been developed that are potentially useful experimentally. mCherry exhibits brighter fluorescence, matures more rapidly, has a higher tolerance for N‐terminal fusion proteins, and is more photostable compared with its predecessor mRFP1. mRFP1 itself was the first true monomer derived from its ancestor DsRed, an obligate tetramer in vivo. Here, we report the successful generation of a transgenic mouse line expressing mCherry as a fluorescent marker, driven by the ubiquitin‐C promoter. mCherry is expressed in almost all tissues analyzed including pre‐ and post‐implantation stage embryos, and white blood cells. No expression was detected in erythrocytes and thrombocytes. Importantly, we did not encounter any changes in normal development, general physiology, or reproduction. mCherry is spectrally and genetically distinct from eGFP and, therefore, serves as an excellent red fluorescent marker alone or in combination with eGFP for labelling transgenic animals. genesis 48:723–729, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
We have developed a method to visualize fluorescent protein-labeled beta-cells in the intact pancreas through combined reflection and confocal imaging. This method provides a 3-D view of the beta-cells in situ. Imaging of the pancreas from mouse insulin I promoter (MIP)-green (GFP) and red fluorescent protein (RFP) transgenic mice shows that islets, beta-cell clusters, and single beta-cells are not evenly distributed but are aligned along the large blood vessels. We also observe the solitary beta-cells in both fetal and adult mice and along the pancreatic and common bile ducts. We have imaged the developing endocrine cells in the embryos using neurogenin-3 (Ngn3)-GFP mice crossed with MIP-RFP mice. The dual-color-coded pancreas from embryos (E15.5) shows a large number of green Ngn3-expressing proendocrine cells with a smaller number of red beta-cells. The imaging technique that we have developed, coupled with the transgenic mice in which beta-cells and beta-cell progenitors are labeled with different fluorescent proteins, will be useful for studying pancreatic development and function in normal and disease states.  相似文献   

20.
With the desire to understand the contributions of multiple cellular elements to the development of a complex tissue; such as the numerous cell types that participate in regenerating tissue, tumor formation, or vasculogenesis, we devised a multi-colored cellular transplant model of tumor development in which cell populations originate from different fluorescently colored reporter gene mice and are transplanted, engrafted or injected in and around a developing tumor. These colored cells are then recruited and incorporated into the tumor stroma. In order to quantitatively assess bone marrow derived tumor stromal cells, we transplanted GFP expressing transgenic whole bone marrow into lethally irradiated RFP expressing mice as approved by IACUC. 0ovarian tumors that were orthotopically injected into the transplanted mice were excised 6-8 weeks post engraftment and analyzed for bone marrow marker of origin (GFP) as well as antibody markers to detect tumor associated stroma using multispectral imaging techniques. We then adapted a methodology we call MIMicc- Multispectral Interrogation of Multiplexed cellular compositions, using multispectral unmixing of fluoroprobes to quantitatively assess which labeled cell came from which starting populations (based on original reporter gene labels), and as our ability to unmix 4, 5, 6 or more spectra per slide increases, we''ve added additional immunohistochemistry associated with cell lineages or differentiation to increase precision. Utilizing software to detect co-localized multiplexed-fluorescent signals, tumor stromal populations can be traced, enumerated and characterized based on marker staining.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号