首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MUC1 mucin is an important tumor-associated antigen that shows extensive glycosylation in vivo. The O-glycosylation of this molecule, which has been well characterized in many cell types and tissues, is important in conferring the unusual biochemical and biophysical properties on a mucin. N-Glycosylation is crucial to the folding, sorting, membrane trafficking, and secretion of many proteins. Here, we evaluated the N-glycosylation of MUC1 derived from two sources: endogenous MUC1 isolated from human milk and a recombinant epitope-tagged MUC1F overexpressed in Caco2 colon carcinoma cells. N-Glycans on purified MUC1F/MUC1 were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), gas chromatography-mass spectrometry (GC-MS), and CAD-ESI-MS/MS. The spectra indicate that MUC1F N-glycans have compositions consistent with high-mannose structures (Hex(5-9)HexNAc(2)) and complex/hybrid-type glycans (NeuAc(0-3)Fuc(0-3)Hex(3-8)HexNAc(3-7)). Many of the N-glycan structures are identical on MUC1F and native MUC1; however, a marked difference is seen between the N-glycans on membrane-bound and secreted forms of the native molecule.  相似文献   

2.
Artificial environmental conditions in tissue culture, such as elevated relative humidity and rich nutrient medium, can influence and modify tissue growth and induce spontaneous changes from characteristic organization pattern to unorganized callus. As succulent plants with crassulacean acid metabolism, cacti are particularly susceptible to this altered growth environment. Glycosylated proteins of Mammillaria gracillis tissues cultivated in vitro, separated by SDS-PAGE, were detected with Con A after the transfer of proteins onto the nitrocellulose membrane. The glycan components were further characterized by affinity blotting with different lectins (GNA, DSA, PNA, and RCA(120)). The results revealed significant differences in glycoprotein pattern among the investigated cactus tissues (shoot, callus, hyperhydric regenerant, and tumor). To test whether the N-glycosylation of the same protein can vary in different developmental stages of cactus tissue, the N-glycans were analyzed by MALDI-TOF MS after in-gel deglycosylation of the excised 38-kDa protein band. Paucimannosidic-type N-glycans were detected in oligosaccharide mixtures from shoot and callus, while the hyperhydric regenerant and tumor shared glycans of complex type. The hybrid oligosaccharide structures were found only in tumor tissue. These results indicate that the adaptation of plant cells to artificial environment in tissue culture is reflected in N-glycosylation, and structures of N-linked glycans vary with different developmental stages of Mammillaria gracillis tissues.  相似文献   

3.
The N-glycosylation of structural unit 1 of Rapana venosa hemocyanin was studied. Enzymatically liberated N-glycans were analyzed by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE)-MS following 8-aminopyrene-1,3,6-trisulfonate labeling and labeling with 3-aminopyrazole, a new dedicated sugar reagent. Structural information was obtained by exoglycosidase sequencing, on-line MS/MS, permethylation, and amidation. A mixture of high-mannose and complex glycans with so far unknown and unusual acidic terminal structures was revealed. As the hemocyanin protein sequence is currently unknown, de novo sequencing of the glycopeptides had to be carried out. The N-glycans were therefore enzymatically removed with simultaneous partial (50%) (18)O-labeling of glycosylated asparagine residues prior to proteolysis. Following nano-liquid chromatography-MALDI-TOF-MS, the originally glycosylated peptides could be revealed and their sequences determined by MS/MS. The site occupancies were subsequently elucidated by precursor ion scanning of the intact glycopeptides using a Q-Trap mass spectrometer.  相似文献   

4.
Qian Y  Zhang X  Zhou L  Yun X  Xie J  Xu J  Ruan Y  Ren S 《Glycoconjugate journal》2012,29(5-6):399-409
Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS(3)) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn(139) is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1?N-glycan.  相似文献   

5.
Plants synthesize N-glycans containing the antigenic sugars α(1,3)-fucose and β(1,2)-xylose. Therefore it is important to monitor these N-glycans in monoclonal antibodies produced in plants (plantibodies). We evaluated several techniques to characterize the N-glycosylation of a plantibody produced in tobacco plants with and without the KDEL tetrapeptide endoplasmic reticulum retention signal which should inhibit or drastically reduce the addition of α(1,3)-fucose and β(1,2)-xylose. Ammonium hydroxide/carbonate-based chemical deglycosylation and PNGase A enzymatic release were investigated giving similar 2-aminobenzamide-labeled N-glycan HPLC profiles. The chemical release does not generate peptides which is convenient for MS analysis of unlabeled pool but its main drawback is that it induces degradation of α1,3-fucosylated N-glycan reducing terminal sugar. Three analytical methods for N-glycan characterization were evaluated: (i) MALDI-MS of glycopeptides from tryptic digestion; (ii) negative-ion ESI-MS/MS of released N-glycans; (iii) normal-phase HPLC of fluorescently labeled glycans in combination with exoglycosidase sequencing. The MS methods identified the major glycans, but the HPLC method was best for identification and relative quantitation of N-glycans. Negative-mode ESI-MS/MS permitted also the correct identification of the linkage position of the fucose residue linked to the inner core N-acteylglucosamine (GlcNAc) in complex N-glycans.  相似文献   

6.
7.
Rat C-CAM is a ubiquitous, transmembrane and carcinoembryonic antigen related cell adhesion molecule. The human counterpart is known as biliary glycoprotein (BGP) or CD66a. It is involved in different cellular functions ranging from intercellular adhesion, microbial receptor activity, signaling and tumor suppression. In the present study N-glycosylation of C-CAM immunopurified from rat liver was analyzed in detail. The primary sequence of rat C-CAM contains 15 potential N-glycosylation sites. The N-glycans were enzymatically released from glycopeptides, fluorescently labeled with 2-aminobenzamide, and separated by two-dimensional HPLC. Oligosaccharide structures were characterized by enzymatic sequencing and MALDI-TOF-MS. Mainly bi- and triantennary complex structures were identified. The presence of type I and type II chains in the antennae of these glycans results in heterogeneous glycosylation of C-CAM. Sialylation of the sugars was found to be unusual; bi- and triantennary glycans contained three and four sialic acid residues, respectively, and this linkage seemed to be restricted to the type I chain in the antennae. Approximately 20% of the detected sugars contain these unusual numbers of sialic acids. C-CAM is the first transmembrane protein found to be oversialylated.  相似文献   

8.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

9.
CA125 is a mucin commonly employed as a diagnostic marker for epithelial ovarian cancer. Induction of humoral responses to CA125 leads to increased survival times in patients with this form of cancer, suggesting a potential role for this mucin in tumor progression. In this study, oligosaccharides linked to CA125 derived from the human ovarian tumor cell line OVCAR-3 were subjected to rigorous biophysical analysis. Sequencing of the O-glycans indicates the presence of both core type 1 and type 2 glycans. An unusual feature is the expression of branched core 1 antennae in the core type 2 glycans. CA125 is also N-glycosylated, expressing primarily high mannose and complex bisecting type N-linked glycans. High mannose type glycans include Man5-Man9GlcNAc2. The predominant N-glycans are the biantennary, triantennary, and tetraantennary bisecting type oligosaccharides. Remarkably, the N-glycosylation profiles of CA125 and the envelope glycoprotein gp120 (derived from H9 lymphoblastoid cells chronically infected with HIV-1) are very similar. The CA125-associated N-glycans have also recently been implicated in crucial recognition events involved in both the innate and adaptive arms of the cell-mediated immune response. CA125 may therefore induce specific immunomodulatory effects by employing its carbohydrate sequences as functional groups, thereby promoting tumor progression. Immunotherapy directed against CA125 may attenuate these immunosuppressive effects, leading to the prolonged survival of patients with this extremely serious form of cancer.  相似文献   

10.
Cell surface glycans and recognition molecules of these glycans play important roles in cellular recognition and trafficking, such as in the inflammation response by sialyl LewisX oligosaccharides. Malignant cells also utilize a similar mechanism during colonization and establishment of tumor tissues in the host. These considerations prompt us to develop a screening method for comprehensive analysis of N-glycans derived from membrane fractions of cancer cells. The method involves two step separations. Initially, N-glycans released from cell membrane fractions with N-glycoamidase F were labeled with 2-aminobenzoic acid and separated based on the number of sialic acid residues attached to the oligosaccharides using affinity chromatography on a serotonin-immobilized stationary phase. Each of the nonretarded fractions containing asialo- and high-mannose type oligosaccharides and mono-, di-, tri-, and tetra-sialooligosaccharide fractions which were desialylated with neuraminidase was analyzed by a combination of HPLC using an Amide-80 column as the stationary phase and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We analyzed total N-glycan pools of membrane fractions obtained from some cancer cells, and found that U937 cells (Histocytic lymphoma cells) expressed a large amount of oligosaccharides having polylactosamine residues and MKN45 cells (Gastric adenocarcinoma cells) contained hyper-fucosylated oligosaccharides which contained multiple fucose residues. The method described here will be a powerful technique for glycomics studies in cell surface glycoproteins, and will enable one to search marker oligosaccharides characteristically observed in various diseases such as cancer, inflammation, and congenital disorder.  相似文献   

11.
In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in native form. After labeling with 2-aminobenzamide, profiling was performed using normal-phase high-performance liquid chromatography with fluorescence detection, and glycans were structurally characterized by MALDI-TOF/TOF-MS and reverse-phase nano-liquid chromatography-MS/MS. These analyses revealed that most of the complex-type N-glycans in the plants expressing GnT-III were bisected and carried at least two terminal N-acetylglucosamine (GlcNAc) residues in contrast to wild-type plants, where a considerable proportion of N-glycans did not contain GlcNAc residues at the nonreducing end. Moreover, we have shown that the majority of N-glycans of an antibody produced in a plant expressing GnT-III is also bisected. This might improve the efficacy of therapeutic antibodies produced in this type of transgenic plant.  相似文献   

12.
Miyoshi E  Nakano M 《Proteomics》2008,8(16):3257-3262
Changes in oligosaccharide structures have been reported in certain types of malignant transformation and thus can be used as tumor markers in certain types of cancer. In the case of pancreatic cancer (PC) cell lines, a variety of fucosylated proteins are secreted into the conditioned media. To identify fucosylated proteins in the sera of patients with PC, we performed Western blot analysis using Aleuria Aurantia Lectin (AAL), which is specific for fucosylated structures. An approximately 40 kD protein was found to be highly fucosylated in PC and N-terminal analysis revealed that it was the beta chain of haptoglobin. While the appearance of fucosylated haptoglobin has been reported in other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer, and colorectal cancer, the incidence was significantly higher in the case of PC. Fucosylated haptoglobin was observed more frequently at the advanced stage of PC and disappeared after operation. Haptoglobin has four sites of N-glycans and site-directed oligosaccharide analysis involving MS was performed. Site-specific increases in fucosylation of bi-antennary glycans of sites 2 and 4, and of tri-antennary glycans of all sites were observed in PC, compared to in normal volunteers and chronic pancreatitis. Therefore, increases in fucosylation seem to be not due to inflammation, but cancer itself. Coculturing of a human hepatoma cell line, Hep3B, with PC cells-induced production of fucosylated haptoglobin, suggesting that PC produces a factor that induces the production of fucosylated haptoglobin. On clinical investigation of 100 cases of colorectal cancer, cases in which it was located near the liver showed a higher positive rate of fucosylated haptoglobin, suggesting that the location of the cancer might also be an important factor for fucosylated haptoglobin if cancer tissues produce such inducible factors. Thus, fucosylated haptoglobin could become a novel tumor marker for PC and complicated mechanisms would be involved in its production.  相似文献   

13.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

14.
A general strategy for the structural evaluation of N-glycosylation, a common post-translational protein modification, is presented. The methods for the release of N-linked glycans from the gel-separated proteins, their isolation, purification and matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) analysis of their mixtures were optimised. Since many glycoproteins are available only at low quantities from sodium dodecyl sulphate-polyacrylamide gel electrophoresis or two-dimensional gels, high attention was paid to obtain N-glycan mixtures representing their actual composition in human plasma by in-gel deglycosylation. The relative sensitivity of solid MALDI matrices for MS analysis of acidic N-glycans was compared. The most favourable results for native acidic N-glycans were obtained with 2,4,6-trihydroxyacetophenone monohydrate/diammoniumcitrate as a matrix. This matrix provided good results for both neutral and acidic mixtures as well as for methylated N-glycans. In the second part of this paper the potential of such an optimised MS strategy alone or in combination with high pH anion-exchange chromatography profiling for the clinical diagnosis of congenital disorders of glycosylation is presented.  相似文献   

15.
Neutrophil gelatinase-associated lipocalin (NGAL) is a promising new renal biomarker that can reduce the time to diagnose acute kidney injury (AKI). There is little information available about complex glycans on NGAL. Detailed structural characterization of NGAL is necessary to understand the structural variability of NGAL used as a standard in the NGAL immunoassay. This study demonstrated that 7-9% of mutant (C87S) recombinant NGAL was N-glycosylated and no O-glycosylation was detected. The NGAL sequence was confirmed by nanoLC/MS/MS following in gel and in solution trypsin digestion, and the N-glycosylation site was localized by MS/MS. Six different mutant recombinant NGAL samples (samples A-F) were analyzed in this study; however, these samples demonstrated two different glycan patterns. Forty-one N-glycans were detected in sample A and the more abundant N-glycans were unsialylated. Forty-three N-glycans were detected in sample F and the more abundant N-glycans were sialylated. Each of the other four samples (B-E) had a similar N-glycan pattern as sample F.  相似文献   

16.
Site-specific N-glycosylation of chicken serum IgG   总被引:2,自引:0,他引:2  
Suzuki N  Lee YC 《Glycobiology》2004,14(3):275-292
Avian serum immunoglobulin (IgG or IgY) is functionally equivalent to mammalian IgG but has one additional constant region domain (CH2) in its heavy (H) chain. In chicken IgG, each H-chain contains two potential N-glycosylation sites located on CH2 and CH3 domains. To clarify characteristics of N-glycosylation on avian IgG, we analyze N-glycans from chicken serum IgG by derivatization with 2-aminopyridine (PA) and identified by HPLC and MALDI-TOF-MS. There were two types of N-glycans: (1) high-mannose-type oligosaccharides (monoglucosylated 26.8%, others 10.5%) and (2) biantennary complex-type oligosaccharides (neutral, 29.9%; monosialyl, 29.3%; disialyl, 3.7%) on molar basis of total N-glycans. To investigate the site-specific localization of different N-glycans, chicken serum IgG was digested with papain and separated into Fab [containing variable regions (VH + VL) + CH1 + CL] and Fc (containing CH3 + CH4) fragments. Con A stained only Fc (CH3 + CH4) and RCA-I stained only Fab fractions, suggesting that high-mannose-type oligosaccharides were located on Fc (CH3 + CH4) fragments, and variable regions of Fab contains complex-type N-glycans. MS analysis of chicken IgG-glycopeptides revealed that chicken CH3 domain (structurally equivalent to mammalian CH2 domain) contained only high-mannose-type oligosaccharides, whereas chicken CH2 domain contained only complex-type N-glycans. The N-glycosylation pattern on avian IgG is more analogous to that in mammalian IgE than IgG, presumably reflecting the structural similarity to mammalian IgE.  相似文献   

17.
BackgroundAlternative glycosylation of serum IgG has been shown to be closely associated with colorectal cancer (CRC). Currently, a dynamic study which can not only minimize the influence of genetic background, environment and other interfering factors during cancer development, but also focus on investigating carcinogenic characteristics of IgG glycan is lacking.MethodsSerum IgG N-glycans were characterized at four stages of CRC development by ultra-performance liquid chromatography in a typical colitis-related CRC mouse model induced by azoxymethane-dextran sodium sulfate. Furthermore, the expression of related glycosyltransferases in splenic B lymphocytes at the corresponding time was also assessed.ResultsThe relative abundance of seven IgG glycans, which can be classified as monoantennary, core fucose, sialic acid, galactose and bisecting, was changed during tumor growth. The abundance of some glycans was altered during the first stage of cancer induction. Correspondingly, the expression of glycosyltransferases in splenic B lymphocytes and different tissues in cancer groups was also decreased compared to that in controls.ConclusionsThis study represents the comprehensive analysis of IgG glycosylation in the dynamic process of colitis-associated CRC. To our knowledge, this is the first report that the expression of glycosyltransferases in mouse splenic B lymphocytes is consistent or inconsistent with the alterations of IgG N-glycans, and the variation tendency is tissue nonspecific.General SignificanceProviding a novel approach to identify the IgG glycans related to the development of CRC and laying a foundation for research on structure and function of glycans using mouse.  相似文献   

18.
During the N-glycosylation reaction, it has been shown that 'free' N-glycans are generated either from lipid-linked oligosaccharides or from misfolded glycoproteins. In both cases, occurrence of high mannose-type free glycans is well-documented, and the molecular mechanism for their catabolism in the cytosol has been studied. On the other hand, little, if anything, is known with regard to the accumulation of more processed, complex-type free oligosaccharides in the cytosol of mammalian cells. During the course of comprehensive analysis of N-glycans in cancer cell membrane fractions [Naka et al. (2006) J. Proteome Res. 5, 88-97], we found that a significant amount of unusual, complex-type free N-glycans were accumulated in the stomach cancer-derived cell lines, MKN7 and MKN45. The most abundant and characteristic glycan found in these cells was determined to be NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-2Manalpha1-3Manbeta1-4GlcNAc. Biochemical analyses indicated that those glycans found were cytosolic glycans derived from lysosomes due to low integrity of the lysosomal membrane. Since the accumulation of these free N-glycans was specific to only two cell lines among the various cancer cell lines examined, these cytosolic N-glycans may serve as a specific biomarker for diagnosis of specific tumours. A cytosolic sialidase, Neu2, was shown to be involved in the degradation of these sialoglycans, indicating that the cytosol of mammalian cells might be equipped for metabolism of complex-type glycans.  相似文献   

19.
We have examined the N-glycans present during the developmental stages of Caenorhabditis elegans using two approaches, 1) a combination of permethylation followed by MALDI-TOF mass spectrometry (MS) and 2) derivatization with 2-aminobenzamide followed by separation by high-performance liquid chromatography and analyses by MALDI-TOF MS, post source decay (PSD) MS, and MALDI-QoTOF MS/MS. The N-glycan profile of each developmental stage (Larva 1, Larva 2, Larva 3, Larva 4, and Dauer and adult) appears to be unique. The pattern of complex N-glycans was stage-specific with the general trend of number and abundance of glycans being Dauer approximately = L1 > adult approximately = L4 > L3 approximately = L2. Dauer larvae contained complex N-glycans with higher molecular masses than those seen in other stages. MALDI-QoTOF MS/MS of Hex4HexNAc4 showed an N-acetyllac-tosamine substitution not previously observed in C. elegans. Phosphorylcholine (Pc)-substituted glycans were also found to be stage-specific. Higher molecular weight Pc-containing glycans, including fucose-containing ones such as difucosyl Pc-glycan (Pc1dHex2Hex5HexNAc6) seen in Dauer larvae, have not been observed in any organism. Pc2Hex4HexNAc3, from Dauer larvae, when subjected to PSD MS analyses, showed Pc may substitute both core and terminally linked GlcNAc; no such structure has previously been reported in any organism. C. elegans-specific fucosyl and native methylated glycans were found in all developmental stages. Taken together, the above results demonstrate that in-depth investigation of the role of the above N-glycans during C. elegans development should lead to a better understanding of their significance and the ways that they may govern interactions, both within the organism during development and between the mobile nematode and its pathogens.  相似文献   

20.
A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号