首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The subunit compositions of the NR1 C2 exon-containing N -methyl- d -aspartate (NMDA) receptors of adult mammalian forebrain were determined by using a combination of immunoaffinity chromatography and immunoprecipitation studies with NMDA receptor subunit-specific antibodies. NMDA receptors were solubilised by sodium deoxycholate, pH 9, and purified by anti-NR1 C2 antibody affinity chromatography. The purified receptor subpopulation showed immunoreactivity with anti-NR1 C2, anti-NR1 N1, anti-NR1 C2', anti-NR2A, and anti-NR2B NMDA receptor antibodies. The NR1 C2-receptor subpopulation was subjected to immunoprecipitation using anti-NR2B antibodies and the resultant immune pellets analysed by immunoblotting where anti-NR1 C2, anti-NR1 C2', anti-NR2A, and anti-NR2B immunoreactivities were all found. Quantification of the immunoblots showed that 46% of the NR1 C2 immunoreactivity was associated with the NR2B subunit. Of this, 87% (i.e., 40% of total) were NR1 C2/NR2B receptors and 13% (6% of total) were NR1 C2/NR2A/NR2B, thus identifying the triple combination as a minor receptor subset. These results demonstrate directly, for the first time, the coexistence of the NR2A and NR2B subunits in native NMDA receptors. They show the coexistence of two splice forms of the NR1 subunit, i.e., NR1 C2 and NR1 C2', in native receptors and, in addition, they imply an NMDA receptor subpopulation containing four types of NMDA receptor subunit, NR1 C2, NR1 C2', NR2A, and NR2B, which, in accord with molecular size determinations, predicts that the NMDA receptor is at least tetrameric. These results are the first quantitative study of NMDA receptor subtypes and demonstrate molecular heterogeneity for both the NR1 and the NR2 subunits in native forebrain NMDA receptors.  相似文献   

2.
N-Methyl-D-aspartate (NMDA) receptor subunits were characterized with seven polyclonal antibodies. The antibodies were directed against NR1-A, NR2A-N1, and NR2C-N1, representing N-terminal sequences of the NR1, NR2A, and NR2C subunits, and against NR1-E, NR2A-C1, and NR2C-C1, derived from C-terminal sequences of these subunits. The anti-NR1-D antibody was raised against the putative internal loop of NR1. A size of 118 kDa was found in sodium dodecyl sulfate-polyacrylamide gel electrophoresis for NR1 (from rat brain) detected by anti-NR1-D and -NR1-E, but not anti-NR1-A. With the anti-NR1-A antibody, a 125-kDa protein was discovered that may represent a glutamate receptor not yet characterized. NR2A and NR2C were identified as proteins with sizes of 175 and 140 kDa, respectively. Enzymatic N-deglycosylation generated a 97-kDa protein from NR1, a 105-kDa protein from the 125-kDa protein, a 162-kDa protein from NR2A, and a 127-kDa protein from NR2C. In contrast to the deglycosylation product of the NR2A, the 97- and 127-kDa proteins derived from NR1 and NR2C, respectively, were found significantly smaller than the molecular masses of 103 and 141 kDa, respectively, predicted on the basis of DNA data. These products may represent truncated proteins. The tissue content of the NR1 and NR2A was high in bovine hippocampus and cortex but lower in the cerebellum. In contrast, NR2C was solely found in the cerebellum. The 125-kDa protein was highest in the cerebellum and cortex.  相似文献   

3.
Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.  相似文献   

4.
《Neuron》2021,109(15):2443-2456.e5
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

5.
The PSD-95/Dlg/ZO-1 (PDZ) domain-containing proteins MALS and PSD-95 localize to post-synaptic densities and bind the COOH-termini of NR2 subunits of the NMDA receptor. The effects of MALS-2 and PSD-95 on the channel activity of NMDA receptors were compared using the Xenopus oocyte expression system. Both MALS-2 and PSD-95 increased the current response of the NR1-NR2B receptor to l-glutamate. In contrast, the current response of the NR1-NR2A receptor was increased by PSD-95 but not by MALS-2. MALS-2 had no effect either on the potentiation of NR1-NR2A or NR1-NR2B channel activity by protein kinase C, or on Src-mediated potentiation of NR1-NR2A activity, whereas PSD-95 almost completely inhibited the effects of these protein kinases. Construction of chimeras of MALS-2 and PSD-95 revealed that the first two PDZ domains and two NH(2)-terminal cysteine residues are essential for the inhibitory effects of PSD-95 on protein kinase C-mediated potentiation of NR1-NR2A and NR1-NR2B channel activity, respectively. The second of the three PDZ domains of PSD-95 was required for its inhibition of Src-mediated potentiation of NR1-NR2A activity. These results indicate that the NR1-NR2A and NR1-NR2B receptors are modulated differentially by MALS-2 and PSD-95, and that similar regulatory effects of PSD-95 on these receptors are achieved by distinct mechanisms.  相似文献   

6.
This study investigates the implication of mitochondria- and caspase-dependent pathways in the death of retinal neurones exposed to the neurosteroid pregnenolone sulfate (PS) shown to evoke apoptosis and contribute to amplification and propagation of excitotoxicity. After a brief PS challenge of intact retinas, caspase-3 and caspase-2 activation and cytochrome c release occur early and independent of changes in the oxidative state measured by superoxide dismutase activity. The temporal and spatial relationship of these events suggests that a caspase-3-dependent pathway is activated in response to cytochrome c release and requires caspase-2 activation and a late cytochrome c release in specific cellular subsets of retinal layers. The protection by caspase inhibitors indicates a predominant role of the pathway in PS-induced retinal apoptosis, although a limited use of caspase inhibitors is upheld on a conceivable shift from apoptosis toward necrosis. Conversely, 3alpha-hydroxy-5beta-pregnan-20-one sulfate and 17beta-oestradiol provide complete prevention of PS-induced retinal death.  相似文献   

7.
Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.  相似文献   

8.
We have performed [(3)H]ifenprodil binding experiments under NMDA receptor-specific assay conditions to provide the first detailed characterisation of the pharmacology of the ifenprodil site on NMDA NR1/NR2B receptors, using recombinant human NR1a/NR2B receptors stably expressed in L(tk-) cells, in comparison with rat cortex/hippocampus membranes. [(3)H]Ifenprodil bound to a single, saturable site on both human recombinant NR1a/NR2B receptors and native rat receptors with B:(max) values of 1.83 and 2.45 pmol/mg of protein, respectively, and K:(D) values of 33.5 and 24.8 nM:, respectively. The affinity of various ifenprodil site ligands-eliprodil, (R:(*), R:(*))-4-hydroxy-alpha-(4-hydroxyphenyl)-beta-methyl-4-pehnyl-1-pi per idineethanol [(+/-)-CP-101,606], cis-3-[4-(4-fluorophenyl)-4-hydroxy-1-piperidinyl]-3, 4-dihydro-2H:-1-benzopyran-4,7-diol [(+/-)-CP-283,097], and (R:(*), S:(*))-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol [(+/-)-Ro 25-6981] was very similar for inhibition of [(3)H]ifenprodil binding to recombinant human NR1a/NR2B and native rat receptors, whereas allosteric inhibition of [(3)H]ifenprodil binding by polyamine site ligands (spermine, spermidine, and arcaine) showed approximately twofold lower affinity for recombinant receptors compared with native receptors. Glutamate site ligands were less effective at modulating [(3)H]ifenprodil binding to recombinant NR1a/NR2B receptors compared with native rat receptors. The NMDA receptor-specific [(3)H]ifenprodil binding conditions described were also applied to ex vivo experiments to determine the receptor occupancy of ifenprodil site ligands [ifenprodil, (+/-)-CP-101,606, (+/-)-CP-283,097, and (+/-)-Ro 25-6981] given systemically.  相似文献   

9.
The protein tyrosine kinase Src is known to regulate NMDA receptors in native neurons. While NR2A, NR2B and NR2D are known to be phosphorylated on tyrosine residues, the exact sites have remained unidentified. Immunoprecipitation of NMDA receptor subunits followed by western blotting was used to analyze the state of tyrosine phosphorylation of recombinant NMDA receptor subunits expressed in HEK293 cells. Using antiphosphotyrosine antibody PY20, we find that on expression in HEK cells, v-Src and Fyn cause detectable tyrosine phosphorylation only of NR2A. Because a stronger signal was produced by the constitutively active v-Src, the general region of v-Src phosphorylation was delimited by expression of a series of truncation mutants of NR2A. Site-directed mutagenesis on candidate sites within the likely region allowed identification of three sites, Y1292, Y1325, and Y1387 that account for a significant fraction of the total PY20 signal. Two of these sites, Y1292 and Y1387, were suggested to control current modulation by Src in previous studies of HEK cells expressing NR1/NR2A. One of these sites, Y1325, has not yet been evaluated for effects on receptor current. A unique tyrosine site, Y1267, was shown not to be a site of detectable phosphorylation, in accordance with its Src-independent regulation of receptor currents.  相似文献   

10.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   

11.
The ability of three anionic cosolutes (sulfate, thiocyanate, and chloride) in modulating the (1)H/(2)H exchange rates for backbone amide protons has been investigated using nuclear magnetic resonance (NMR) for two different proteins: the IGg-binding domain of protein L (ProtL) and the glucose-galactose-binding protein (GGBP). Our results show that moderate anion concentrations (0.2 M-1 M) regulate the exchange rate following the Hofmeister series: Addition of thiocyanate increases the exchange rates for both proteins, while sulfate and chloride (to a less extent) slow down the exchange reaction. In the presence of the salt, no alteration of the protein structure and minimal variations in the number of measurable peaks are observed. Experiments with model compounds revealed that the unfolded state is modulated in an equivalent way by these cosolutes. For ProtL, the estimated values for the local free energy change upon salt addition (m (3,DeltaG )) are consistent with the previously reported free energy contribution from the cosolute's preferential interaction/exclusion term indicating that nonspecific weak interactions between the anion and the amide groups constitute the dominant mechanism for the exchange-rate modulation. The same trend is also found for GGBP in the presence of thiocyanate, underlining the generality of the exchange-rate modulation mechanism, complementary to more investigated effects like the electrostatic interactions or specific anion binding to protein sites.  相似文献   

12.
The antagonist-bound conformation of the NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor are modeled using the crystal structure of the DCKA (5,7-dichloro-kynurenic acid)-bound form of the NR1 subunit ligand-binding core (S1S2). Five different competitive NMDA receptor antagonists [(1) DL-AP5; (2) DL-AP7; (3) CGP-37847; (4) CGP 39551; (5) (RS)-CPP] have been docked into both NR2A and NR2B subunits. Experimental studies report NR2A and NR2B subunits having dissimilar interactions and affinities towards the antagonists. However, the molecular mechanism of this difference remains unexplored. The distinctive features in the antagonist's interaction with these two different but closely related (approximately 80% sequence identity at this region) subunits are analyzed from the patterns of their hydrogen bonding. The regions directly involved in the antagonist binding have been classified into seven different interaction sites. Two conserved hydrophilic pockets located at both the S1 and S2 domains are found to be crucial for antagonist binding. The positively charged (Lys) residues present at the second interaction site and the invariant residue (Arg) located at the fourth interaction site are seen to influence ligand binding. The geometry of the binding pockets of NR2A and NR2B subunits have been determined from the distance between the C-alpha atoms in the residues interacting with the ligands. The binding pockets are found to be different for NR2A and NR2B. There are gross dissimilarities in competitive antagonist binding between these two subunits. The binding pocket geometry identified in this study may have the potential for future development of selective antagonists for the NR2A or NR2B subunit.  相似文献   

13.
We previously demonstrated that NMDA receptors containing the NR2A or NR2B subunits differentially regulate striatal output pathways. We now investigate whether such a differential control is altered under parkinsonian conditions and whether subunit selective antagonists have different abilities to attenuate parkinsonian-like motor deficits. Three microdialysis probes were simultaneously implanted in the dopamine-depleted striatum, globus pallidus and substantia nigra reticulata of 6-hydroxydopamine hemilesioned rats. The NR2A antagonist NVP-AAM077 perfused in the striatum reduced pallidal GABA, but not glutamate, levels whereas the NR2B antagonist Ro 25-6981 was ineffective. Neither antagonist affected striatal or nigral amino acid levels. To investigate whether these neurochemical responses were predictive of different antiparkinsonian activities, antagonists were administered systemically and motor activity evaluated in different motor tasks. Neither antagonist attenuated akinesia/bradykinesia in the bar and drag test. However, NVP-AAM077 dually modulated rotarod performance (low doses being facilitatory and higher ones inhibitory) while Ro 25-6981 monotonically improved it. Microdialysis revealed that motor facilitating doses reduced pallidal GABA levels while motor inhibiting doses increased them. We conclude that, under parkinsonian conditions, the striato-pallidal pathway is driven by striatal NR2A subunits. Motor improvement induced by NVP-AAM077 and Ro 25-6981 is accomplished by blockade of striatal NR2A and extrastriatal NR2B subunits, respectively.  相似文献   

14.
This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co‐immunoprecipitated with assembled NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1‐1a, NR1‐2a, NR1‐4bc‐Myc, or NR2 subunit transfections revealed that co‐association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2′ cassettes and, the use of an NR1‐2ac‐Myc‐trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N‐terminal domains. Anti‐APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti‐NR1 or anti‐NR2A antibodies co‐immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co‐expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer’s disease.  相似文献   

15.
Abstract: We investigated the gene expression levels, the immunoreactive protein prevalence, and the functional activity of N -methyl- d -aspartate (NMDA) receptor complexes at early times after severe global ischemia challenge in rats. The mRNA expression levels for the NR2A and NR2B subunits of NMDA receptors changed to different degrees within different subregions of the hippocampus after reperfusion with respect to sham-operated control. No significant change in expression was observed in the vulnerable CA1 subfield at or before 6 h after challenge for either receptor subunit, although changes in expression in other hippocampal subfields were observed. At 12 and 24 h after challenge, significant decreases in expression for both subunits were found in the vulnerable CA1 subfield, as well as in other hippocampal regions. At the protein level, a significant decrease in the amount of NR2A/NR2B immunoreactivity in the total hippocampus was observed at both 6 and 24 h after reperfusion compared with sham control. Electrophysiological assessment of single-channel NMDA receptor activity in the CA1 subfield indicates that the main conductance state of NMDA receptor channels is maintained 6 h after challenge, although by 18–24 h after challenge, this main conductance state is rarely observed. The NMDA receptor component of the excitatory postsynaptic field potential was found to be significantly diminished from sham control 24 h after challenge, such that only ∼10% of the sham response remained, but was not significantly altered from sham control at 6 h after challenge. These results indicate that decreases in the expression levels, the immunoreactive protein prevalence, and that alterations in the functionality of NMDA receptors occur in the hippocampus at early times after severe transient global ischemia.  相似文献   

16.
17.
Synapse Associated Protein 97 (SAP97), a member of membrane-associated guanylate kinase (MAGUK) protein family, has been involved in the correct targeting and clustering of ionotropic glutamate receptors (iGluRs) at postsynaptic sites. Calcium/calmodulin kinase II (CaMKII) phosphorylates SAP97 on two major sites in vivo; one located in the N-terminal domain (Ser39) and the other in the first postsynaptic density disc large ZO1 (PDZ) domain (Ser232). CaMKII-mediated phosphorylation of SAP97-Ser39 is necessary and sufficient to drive SAP97 to the postsynaptic compartment in cultured hippocampal neurons. CaMKII-dependent phosphorylation of Ser232 disrupts SAP97 interaction with NR2A subunit, thereby regulating synaptic targeting of this NMDA receptor subunit. Here we show by means of phospho-specific antibodies that SAP97-Ser39 phosphorylation represents the driving force to release SAP97/NR2A complex from the endoplasmic reticulum. Ser39 phosphorylation does not interfere with SAP97 capability to bind NR2A. On the contrary, SAP97-Ser232 phosphorylation occurs within the postsynaptic compartment and is responsible for both the disruption of NR2A/SAP97 complex and, consequently, for NR2A insertion in the postsynaptic membrane. Thus, CaMKII-dependent phosphorylation of SAP97 in different time frames and locations within the neurons controls both NR2A trafficking and insertion.  相似文献   

18.
19.
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.  相似文献   

20.
Functional N-methyl-d-aspartate receptors NMDARs are thought to be heteromeric receptor complexes consisting of NR1 and NR2 subunits. However, recombinant NR1 subunits expressed in Xenopus oocytes assemble functional ion channels even without exogenous NR2 subunits and with a different pharmacology, suggesting a homomeric subunit stoichiometry. To explain this phenomenon, we screened oocytes for Xenopus NR2 subunits and found all four subunit-encoding mRNAs (XenNR2A-XenNR2D) to be present endogenously, with those encoding the XenNR2B subunit being particularly abundant. We cloned the full-length XenNR2B cDNA and co-expressed it with NR1 in oocytes. A detailed electrophysiological characterization revealed that the pharmacology of NR1/XenNR2B was identical with that of the presumed homomeric NMDARs expressed from NR1 subunits. By contrast, heteromeric receptors containing the rat NR2B subunit showed significant pharmacological differences compared with NR1/XenNR2B receptors. These results demonstrate that recombinant NR1 subunits expressed in Xenopus oocytes interact with an endogenously expressed NR2B subunit and form hybrid heteromeric NMDARs. These findings confirm the current views that NMDARs are obligatory heteromeric complexes and that functional homomeric NMDARs do not exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号