首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A re-annotation of the Saccharomyces cerevisiae genome   总被引:5,自引:0,他引:5  
Discrepancies in gene and orphan number indicated by previous analyses suggest that S. cerevisiae would benefit from a consistent re-annotation. In this analysis three new genes are identified and 46 alterations to gene coordinates are described. 370 ORFs are defined as totally spurious ORFs which should be disregarded. At least a further 193 genes could be described as very hypothetical, based on a number of criteria. It was found that disparate genes with sequence overlaps over ten amino acids (especially at the N-terminus) are rare in both S. cerevisiae and Sz. pombe. A new S. cerevisiae gene number estimate with an upper limit of 5804 is proposed, but after the removal of very hypothetical genes and pseudogenes this is reduced to 5570. Although this is likely to be closer to the true upper limit, it is still predicted to be an overestimate of gene number. A complete list of revised gene coordinates is available from the Sanger Centre (S. cerevisiae reannotation: ftp://ftp/pub/yeast/SCreannotation).  相似文献   

3.
The vast majority of wine fermentations are performed principally by Saccharomyces cerevisiae. However, there are a growing number of instances in which other species of Saccharomyces play a predominant role. Interestingly, the presence of these other yeast species generally occurs via the formation of interspecific hybrids that contain genomic contributions from both S.?cerevisiae and non-S.?cerevisiae species. However, despite the large number of wine strains that are characterized at the genomic level, there remains limited information regarding the detailed genomic structure of hybrids used in winemaking. To address this, we describe the genome sequence of the thiol-releasing commercial wine yeast hybrid VIN7. VIN7 is shown to be an almost complete allotriploid interspecific hybrid that is comprised of a heterozygous diploid complement of S.?cerevisiae chromosomes and a haploid Saccharomyces kudriavzevii genomic contribution. Both parental strains appear to be of European origin, with the S.?cerevisiae parent being closely related to, but distinct from, the commercial wine yeasts QA23 and EC1118. In addition, several instances of chromosomal rearrangement between S.?cerevisiae and S.?kudriavzevii sequences were observed that may mark the early stages of hybrid genome consolidation.  相似文献   

4.
Many industrial strains of Saccharomyces cerevisiae have been selected primarily for their ability to convert sugars into ethanol efficiently despite exposure to a variety of stresses. To begin investigation of the genetic basis of phenotypic variation in industrial strains of S. cerevisiae, we have sequenced the genome of a wine yeast, AWRI1631, and have compared this sequence with both the laboratory strain S288c and the human pathogenic isolate YJM789. AWRI1631 was found to be substantially different from S288c and YJM789, especially at the level of single-nucleotide polymorphisms, which were present, on average, every 150 bp between all three strains. In addition, there were major differences in the arrangement and number of Ty elements between the strains, as well as several regions of DNA that were specific to AWRI1631 and that were predicted to encode proteins that are unique to this industrial strain.  相似文献   

5.
6.
Considerable amounts of molecular and genetic data indicate that interspecific hybridisation may not be rare among natural strains of Saccharomyces sensu stricto. Although a post-zygotic barrier operating during meiosis usually prevents the production of viable spores, stable hybrids can arise which can even evolve into distinct species. This study was aimed to analyse the genome of a fertile Saccharomyces cerevisiae x S. uvarum hybrid and monitor its changes over four filial generations of viable spores. The molecular genetic analysis demonstrated that the two species did not contribute equally to the formation and stabilisation of the hybrid genome. S. cerevisiae provided the mitochondrial DNA and the more stable part of the nuclear genome. The S. uvarum part of the hybrid nuclear genome became progressively smaller by loosing complete chromosomes and genetic markers in the course of successive meiotic divisions. Certain S. uvarum chromosomes were eliminated and/or underwent rearrangements in interactions with S. cerevisiae chromosomes. Numerous S. uvarum chromosomes acquired S. cerevisiae telomere sequences. The gradual elimination of large parts of the S. uvarum genome was associated with a progressive increase of sporulation efficiency. We hypothesise that this sort of genomic alterations may contribute to speciation in Saccharomyces sensu stricto.  相似文献   

7.
Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.  相似文献   

8.
9.
Myung K  Kolodner RD 《DNA Repair》2003,2(3):243-258
The accumulation of gross chromosomal rearrangements (GCRs) is a characteristic of many types of cancer cells, although it is unclear what defects cause these rearrangements and how the different types of GCRs observed are formed. In the present study, we have used a Saccharomyces cerevisiae system for measuring GCRs to analyze the ability of a variety of DNA damaging agents to induce GCRs. The two most potent inducers of GCRs observed were methyl methane sulfonate (MMS) and HO-endonuclease-induced double strand breaks (DSBs). Bleomycin, camptothecan and gamma-irradiation induced intermediate levels of GCRs and cisplatin induced very low levels of GCRs whereas N-methyl-NPRIME;-nitro-N-nitrosoguanidine (MNNG) and ethyl methane sulfonate (EMS) primarily induced base substitution mutations. MMS treatment primarily induced rearrangements in which the end of a chromosome was deleted and a new telomere was added (telomere additions) and also induced translocations. Consistent with this GCR spectrum, the formation of MMS-induced GCRs was primarily dependent on telomere maintenance functions and were completely eliminated in mutants that were defective for both telomere maintenance functions and non-homologous end joining (NHEJ). In contrast, HO-endonuclease DSBs induced mostly translocations and interstitial deletions whereas few telomere additions were observed. Genetic analysis indicated that HO DSB-induced GCRs were suppressed by a number of pathways including the DNA damage checkpoints, DSB repair pathways and NHEJ.  相似文献   

10.
The last ten years, since yeast Saccharomyces cerevisiae genome was sequenced, brought a big impact in genome-wide techniques. The tenth anniversary of genomic era provokes the following resume: a lot of new methods were invented. The yeast strains libraries carrying transposon insertions, gene deletions or tagged proteins have been created. Using them, the phenotypes of gene deletions, as well as the biological activity, cellular localization and possible modifications of their protein products were elucidated. SAGE analysis and DNA microarray experiments showed gene expression profiles and allowed to build interaction networks of gene regulation. The two dimensional gels, mass spectrometry, protein arrays and two-hybrid system carry information about protein interactions, modifications, and biochemical activities. All these methods permit to increase the number of genes with known cellular functions. Moreover, testing these techniques on yeast S. cerevisiae--a model eukaryotic organism--opened the door for their usage in all other species.  相似文献   

11.
12.
Amin AD  Chaix AB  Mason RP  Badge RM  Borts RH 《PloS one》2010,5(11):e15380

Background

The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids.

Methodology/Principal Findings

In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures.

Conclusions

This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.  相似文献   

13.
B C Hyman  J H Cramer  R H Rownd 《Gene》1983,26(2-3):223-230
Restriction fragments produced by a complete Sau3A cleavage of Saccharomyces cerevisiae grande mitochondrial DNA were ligated into the yeast-Escherichia coli shuttle vector YIp5 to establish a clone library representing the mitochondrial genome. 30 hybrid plasmids with an average insert size of 1200 bp were chosen at random and tested for the presence of an autonomously replicating sequence (ars). Over two-thirds of these plasmids transformed yeast at high frequency, indicating the mitochondrial genome contains a large number of ars elements. Our calculations suggest there may be over 40 ars elements contained within the mitochondrial DNA with an average spacing of less than 1700 bp. Mapping experiments indicate that ars elements can be found at many locations on the mitochondrial genome, and in the initial example we have tested, the locations of ars elements derived from grande and petite mtDNAs appear to coincide. If we assume that these ars elements represent mitochondrial DNA replication origins used in vivo, these observations would explain in part the fact that petite mtDNAs can be derived from any location on the grande mitochondrial genome.  相似文献   

14.
15.
Phadnis N  Sia RA  Sia EA 《Genetics》2005,171(4):1549-1559
Mitochondrial DNA deletions and point mutations accumulate in an age-dependent manner in mammals. The mitochondrial genome in aging humans often displays a 4977-bp deletion flanked by short direct repeats. Additionally, direct repeats flank two-thirds of the reported mitochondrial DNA deletions. The mechanism by which these deletions arise is unknown, but direct-repeat-mediated deletions involving polymerase slippage, homologous recombination, and nonhomologous end joining have been proposed. We have developed a genetic reporter to measure the rate at which direct-repeat-mediated deletions arise in the mitochondrial genome of Saccharomyces cerevisiae. Here we analyze the effect of repeat size and heterology between repeats on the rate of deletions. We find that the dependence on homology for repeat-mediated deletions is linear down to 33 bp. Heterology between repeats does not affect the deletion rate substantially. Analysis of recombination products suggests that the deletions are produced by at least two different pathways, one that generates only deletions and one that appears to generate both deletions and reciprocal products of recombination. We discuss how this reporter may be used to identify the proteins in yeast that have an impact on the generation of direct-repeat-mediated deletions.  相似文献   

16.
A new putative gene in the mitochondrial genome of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Y Colin  G Baldacci  G Bernardi 《Gene》1985,36(1-2):1-13
  相似文献   

17.
SUMMARY: SPrCY is a web-accessible database which provides comparison of structure prediction results for the Saccharomyces cerevisiae genome. This web service offers the ability to search, analyze and compare the yeast structural predictions from sequence-only (Superfamily, PDBAA BLAST and Pfam) and sequence-structure-based (SAM-T02, 3D-PSSM, mGenTHREADER) methods. AVAILABILITY: The service is freely available via web at http://agave.wustl.edu/yeast/  相似文献   

18.
The mitochondrial ATP synthase is a molecular motor, which couples the flow of protons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the alpha-, beta-, and gamma-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the gamma-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk.  相似文献   

19.
An androgen-inducible expression system for Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
A novel controllable expression system for Saccharomyces cerevisiae has been developed. Expression of the gene encoding the human androgen receptor, from a strong yeast promoter, results in transactivation of a hybrid promoter carrying androgen-responsive sequences such that a target gene may be expressed in an androgen-dependent manner. By selection of an appropriate combination of androgen receptor level, target-gene copy number and concentration of the androgenic ligand, dihydrotestosterone, the expression level can be set within a 1400-fold range with no detectable effect on normal cell growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号