首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine lactoferrin is produced on an industrial scale from cheese whey or skim milk. The safety of purified lactoferrin has been confirmed from the results of a reverse mutation test using bacteria, a 13-week oral repeated-dose toxicity study in rats, and clinical studies. In order to apply active lactoferrin to various products, a process for its pasteurization was developed. Subsequently, lactoferrin has been used in a wide variety of products since it was first added to infant formula in 1986. A pepsin hydrolysate of lactoferrin is also used in infant formula. This hydrolysate contains a potent antimicrobial peptide named lactoferricin that is derived from the lactoferrin molecule by pepsin digestion. Semilarge-scale purification of lactoferricin can be performed by hydrophobic interaction chromatography. Lactoferricin also exhibits several biological actions and appears to be the functional domain of lactoferrin. Recent studies have demonstrated that oral administration of lactoferrin or lactoferricin exerts a host-protective effect in various animals and in humans. The results of these studies strongly suggest that the effects of oral lactoferrin are mediated by modulation of the immune system. Further elucidation of the clinical efficacy and mechanism of action of lactoferrin will increase the value of lactoferrin-containing products.  相似文献   

2.
Lactoferrin: the path from protein to gene   总被引:1,自引:0,他引:1  
  相似文献   

3.
The 3-D structure of human lactoferrin was first solved in atomic detail in 1987. Since that time, a variety of proven and postulated activities have been added to the original annotation of lactoferrin as an iron-binding protein. Structural studies have also expanded to include iron-bound and iron-free (apo) forms, mutants, and the lactoferrins of different species. In this review, we take the current information on both structure and function and show that the 3-D structure provides a useful framework for understanding some activities and also points to productive research directions that could help elucidate other reported functions. Some functions relate to iron binding where the role of lactoferrin is to scavenge and retain iron across a wide pH range. We specifically focus on functions that depend on the surface structure of the molecule, identifying features that may determine the many other protective properties of this multifunctional protein.  相似文献   

4.
The lactoferrin protein possesses antimicrobial and antiviral activities. It is also involved in the modulation of the immune response. In a normal healthy individual, lactoferrin plays a role in the front-line host defense against infection and in immune and inflammatory responses. Whether genomic variations, such as single nucleotide polymorphisms (SNPs), have an effect on the structure and function of lactoferrin protein and whether these variations contribute to the different susceptibility of individuals in response to environmental insults are interesting health-related issues. In this study, the lactoferrin gene was resequenced as part of the Environmental Genome Project of the National Institute of Environmental Health Sciences, which operates within the National Institutes of Health. Ninety-one healthy donors of different ethnicities were used to establish common SNPs in the exons of the lactoferrin gene in the general population. The data will serve as a basis from which study the association of lactoferrin polymorphism and disease.  相似文献   

5.
Lactoferrin has long been recognized for its antimicrobial properties, initially attributed primarily to iron sequestration. It has since become apparent that interaction between the host and bacteria is modulated by a complex series of interactions between lactoferrin and bacteria, lactoferrin and bacterial products, and lactoferrin and host cells. The primary focus of this review is the interaction between lactoferrin and bacteria, but interactions with the lactoferrin-derived cationic peptide lactoferricin will also be discussed. We will summarize what is currently known about the interaction between lactoferrin (or lactoferricin) and surface or secreted bacterial components, comment on the potential physiological relevance of the findings, and identify key questions that remain unanswered.  相似文献   

6.
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, B. longum) incubated with biotinylated lactoferrin and fluorescein conjugated-avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain-dependent.  相似文献   

7.
Lactoferrin is an 80kDa iron-binding glycoprotein. It is secreted by exocrine glands. Many functions such as iron sequestering, anti-bacterial activity, regulation of gene expression, and immunomodulation are attributed to it. In the present study, we report the production of recombinant equine lactoferrin (ELF) in the methylotropic yeast Pichia pastoris using pPIC9K vector. The recombinant protein was purified by one-step affinity chromatography using heparin-Sepharose column. The purified protein has a molecular weight of 80kDa and reacted with antibody raised against the native equine lactoferrin. Its N-terminal sequence was identical to that of the native ELF. The iron-binding behavior and circular dichroism studies of the purified protein indicate that it has folded properly. The recombinant protein appears to be hyperglycosylated by the host strain, GS115. This is the first heterologous expression of equine lactoferrin and also the first report of intact lactoferrin expression using P. pastoris system. An yield of 40mg/l obtained in shake-flask cultures with this system, which is higher than the reported values for other systems.  相似文献   

8.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   

9.
Tritrichomonas foetus is a common, sexually transmitted, protozoan parasite of cattle. It has an essential requirement for iron, which it obtains from host lactoferrin. However, specific lactoferrin-binding protein receptors have not yet been identified in T. foetus. To differentiate specific and nonspecific binding of lactoferrin, lactoferrin affinity chromatography and Western blotting was used to identify metabolically or surface-labeled T. foetus lactoferrin-binding proteins. Bovine lactoferrin was shown to bind more efficiently than human lactoferrin, and each of these bound much better than bovine transferrin. This is relevant because T. foetus is both species-specific and only infects the mucosal surface of the reproductive tract, which has little transferrin. Whereas the majority of lactoferrin binding was specific, competitive inhibition studies showed that nonspecific, charge-related binding of lactoferrin to T. foetus may also be involved. In the presence of bovine cervical mucus, binding of lactoferrin to T. foetus was diminished, suggesting that mucus has an effect on lactoferrin binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surface biotinylated proteins affinity-purified on lactoferrin-Sepharose showed biotinylated bands at Mr values of 22, 49, 55, 72, and 155 kDa. Because lactoferrin-binding proteins may be susceptible to digestion by T. foetus extracellular cysteine proteinases, it is suspected that the 155-kDa protein is the specific lactoferrin-binding protein and that the lower-Mr lactoferrin-binding molecules may be fragmentation products that contain the lactoferrin-binding site; however, other interpretations are clearly feasible. It is possible that there may be multiple proteins or multimers of the same protein. In summary, the data showed that binding of lactoferrin to T. foetus may be regulated by an interplay of specific receptor interactions as well as by hydrophobic and charge-related interactions.  相似文献   

10.
Lactoferrin Is the Major Deoxyribonuclease of Human Milk   总被引:1,自引:0,他引:1  
Lactoferrin is the major iron-transferring protein of human barrier fluids such as blood and milk. It is a polyfunctional protein capable of binding DNA exposed on the surface of various cells. Electrophoretically homogenous lactoferrin was prepared by sequential chromatography of human milk proteins on DEAE-cellulose, heparin-Sepharose, and Sepharose containing immobilized anti-lactoferrin antibodies. By subsequent chromatography on Blue Sepharose the resulting lactoferrin was fractionated into several subfractions with different affinity for the sorbent, and this was associated with separation of additional lactoferrin peaks with DNase activity from the main peak. By various techniques, in particular, by in situ testing the DNase activity of lactoferrin in a DNA-containing gel after SDS-electrophoresis, hydrolysis of DNA was for the first time shown to be an intrinsic property of lactoferrin. The substrate specificity of lactoferrin in hydrolysis of DNA was different from specificities of known human DNases. Hydrolysis of DNA was activated by bivalent metal ions and also by ATP and NAD. Unlike the main fraction of lactoferrin with the highest affinity for Blue Sepharose, all protein subfractions with DNase activity were cytotoxic and suppressed growth of human and mouse tumor cell lines.  相似文献   

11.
Bai C  Xu XL  Chan FY  Lee RT  Wang Y 《Eukaryotic cell》2006,5(2):238-247
The cell walls of microbial pathogens mediate physical interactions with host cells and hence play a key role in infection. Mannosyltransferases have been shown to determine the cell wall properties and virulence of the pathogenic fungus Candida albicans. We previously identified a C. albicans alpha-1,2-mannosyltransferase, Mnn5, for its novel ability to enhance iron usage in Saccharomyces cerevisiae. Here we have studied the enzymatic properties of purified Mnn5 and characterized its function in its natural host. Mnn5 catalyzes the transfer of mannose to both alpha-1,2- and alpha-1,6-mannobiose, and this activity requires Mn2+ as a cofactor and is regulated by the Fe2+ concentration. An mnn5Delta mutant showed a lowered ability to extend O-linked, and possibly also N-linked, mannans, hypersensitivity to cell wall-damaging agents, and a reduction of cell wall mannosylphosphate content, phenotypes typical of many fungal mannosyltransferase mutants. The mnn5Delta mutant also exhibited some unique defects, such as impaired hyphal growth on solid media and attenuated virulence in mice. An unanticipated phenotype was the mnn5Delta mutant's resistance to killing by the iron-chelating protein lactoferrin, rendering it the first protein found that mediates lactoferrin killing of C. albicans. In summary, MNN5 deletion impairs a wide range of cellular events, most likely due to its broad substrate specificity. Of particular interest was the observed role of iron in regulating the enzymatic activity, suggesting an underlying relationship between Mnn5 activity and cellular iron homeostasis.  相似文献   

12.
In this work, purification of lactoferrin from whey was performed with high recovery rate. Lactoferrin was then exploited in the preparation of food emulsions. Two tertiary emulsions, formed by olive oil, lecithin, chitosan, and lactoferrin, were compared: both the emulsions showed similar turbidity and stability. In the secondary emulsion formed by oil/lecithin/chitosan, the pH was increased to 9 before addition of lactoferrin. Then, lactoferrin was added, and the pH was stabilized above pH 9. Lactoferrin was found in amounts of 1 to 2.5 mg/ml in the multiple experiments. A fraction of the added lactoferrin was also present in a milky layer above the emulsion layer. This was, to our knowledge, the first study of emulsions made exploiting the interactions between lactoferrin and chitosan. It was noted that chitosan droplets remained soluble, although the hydrocolloid solubility occurs at pH lower than 5.9. These results showed the feasibility of manufacturing lactoferrin-based emulsions as functional foods.  相似文献   

13.
Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.  相似文献   

14.
Examination of bovine lactoferrin binding to bifidobacteria   总被引:1,自引:0,他引:1  
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, and B. longum) incubated with biotinylated lactoferrin and fluorescein-conjugated avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far-western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain dependent. Published in Russian Prikladnaya Biokhimiya i Mikrobiologiya, 2008, Vol. 44, No. 5, pp. 529–532.  相似文献   

15.
It was established by indirect immunofluorescence with the use of antibodies to human lactoferrin that thymic lymphocytes bear lactoferrin receptors in the point structures on the cell surface. The ability of thymic lymphocytes to express lactoferrin receptors depends on the cAMP concentration in the cell, inasmuch the treatment of lymphocytes with adenosine and theophylline increases the number of cells bearing lactoferrin receptors. Supernatant of thymic lymphocytes is also capable of stimulating expression of lactoferrin receptors. It is assumed that these treatments can be used for increasing the number of lymphocytes with lactoferrin receptors with the purpose of separation and study of the function of this subpopulation in health and in different pathological conditions.  相似文献   

16.
Lactoferrin has been isolated from canine leukocytes for the first time. Lactoferrin was identified by N-terminal amino acid sequence and by capability to capture ferric cations resulting in a complex with absorbance maximum at 460-470 nm. It is demonstrated that canine lactoferrin resembles the human homolog in some physicochemical properties, i.e. molecular weight, carbohydrate presence, and conditions of protein-iron complex dissociation. Bactericidal activity of dog lactoferrin was demonstrated on the gram-negative bacterium Escherichia coli and gram-positive bacterium Listeria monocytogenes. Bactericidal activity of canine lactoferrin is similar to that of human lactoferrin.  相似文献   

17.
18.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

19.
Within the blood cells, lactoferrin is found only in the late stage neutrophilic granulocytes. Lactoferrin first appears in these cells during the myelocyte stage of development coincidentally with the specific or secondary granules. Most investigators report a cytoplasmic immunocytochemical localization reaction within the granulocyte. However, others have observed a prominent nuclear localization reaction. Treating the cells with certain fixatives was shown to prevent the relocation of lactoferrin from the cytoplasm to the nucleus when the localization was done on granulocytes prepared by smearing. The present study demonstrated that the relocation of lactoferrin is only a problem when cells were smeared or cytocentrifuged onto slides or fractionated for the purpose of isolating cellular organelles. Under these conditions the selection of fixative is an important consideration. Exposing isolated lactoferrin to a fixative effective in retaining lactoferrin in the cytoplasm of granulocytes smeared on slides did not alter a number of its physical properties. The results suggest that maintenance of the normal cytoarchitecture or effect of fixative on other cellular components prevents the relocation of lactoferrin within the cell during tissue processing and the direct action of fixation on lactoferrin is probably not responsible for this effect.  相似文献   

20.
The interactions between negatively charged β-lactoglobulin and the positively charged lactoferrin at the droplet surface to form a multi-protein surface layer were examined. Addition of lactoferrin to the aqueous phase of emulsions formed with β-lactoglobulin at pH 7.0 caused an increase in the ζ-potential of emulsion droplets, and the ζ-potential became positive as the concentration of added lactoferrin was higher than 1% in the system. It is found that lactoferrin binds to adsorbed β-lactoglobulin at droplet surface probably via electrostatic interactions. The amount of lactoferrin at interface increased with increasing the concentration of added lactoferrin, but it decreased with a decrease in the pH. No lactoferrin was observed at interface at pH 3 and 4. By contrast, when β-lactoglobulin was added in the emulsions formed with lactoferrin at pH 7.0, the ζ-potential of emulsions changed from positive to negative as the concentration of added β-lactoglobulin increased. The amount of β-lactoglobulin at surface increased correspondingly with increasing the concentration of added β-lactoglobulin. However, in this case, β-lactoglobulin remained bound at interface even at pH 3 and 4 where both lactoferrin and β-lactoglobulin are positively charged. The association of lactoferrin or β-lactoglobulin with the surface proteins that have oppositely charge is probably mainly through electrostatic interactions between the two proteins. It appears that alternative layers of these proteins could be created at the droplet surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号