共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneity of the Functional Expression of P2X3 and P2X2/3 Receptors in the Primary Nociceptive Neurons of Rat 总被引:3,自引:0,他引:3
Pankratov Yu. V. Lalo U. V. Dashkin A. N. Krishtal O. A. 《Neurochemical research》2001,26(8-9):993-1000
The properties and functional expression of the purinergic receptors in small (nociceptive) neurons acutely isolated from the DRG of rat were studied using whole-cell patch-clamp recording. The responses of small DRG neurons to ATP exhibited diverse kinetics and could be subdivided into three types: rapid, slow and mixed kinetics responses. Their affinities to agonists allowed to identify the responsible receptors as P2X3 (fast) and heteromeric P2X2/3 (slow) subtypes. The expression of different responses dramatically varied both on the neuron-to-neuron and animal-to-animal basis. Out of 744 neurons tested 24% of cells demonstrated predominance of functional P2X2/3 receptors, 44% had mixed representation and in 32% of cells P2X3 receptors dominated. All the animals tested (110) could be subdivided into 3 groups: in 19% of animals the response of each cell to ATP was mediated by P2X2/3 receptors, both types of ATP-evoked currents were found in 58% of animals and only in 23% of the animals P2X3 receptors dominated. Our results argue with exclusive role of P2X3 receptors in purinergic signaling in primary nociceptive neurons. 相似文献
2.
Ivermectin (IVM), a widely used antiparasitic agent in human and veterinary medicine, was recently shown to augment macroscopic currents through rat P2X(4) receptor channels. In the present study, the effects of IVM on the human P2X(4) (hP2X(4)) receptor channel stably transfected in HEK293 cells were investigated by recording membrane currents using the patch clamp technique. In whole-cell recordings, IVM (< or =10 microM) applied from outside the cell (but not from inside) increased the maximum current activated by ATP, and slowed the rate of current deactivation. These two phenomena likely result from the binding of IVM to separate sites. A higher affinity site (EC(50) 0.25 microM) increased the maximal current activated by saturating concentrations of ATP without significantly changing the rate of current deactivation or the EC(50) and Hill slope of the ATP concentration-response relationship. A lower affinity site (EC(50) 2 microM) slowed the rate of current deactivation, and increased the apparent affinity for ATP. In cell-attached patch recordings, P2X(4) receptor channels exhibited complex kinetics, with multiple components in both the open and shut distributions. IVM (0.3 microM) increased the number of openings per burst, without significantly changing the mean open or mean shut time within a burst. At higher concentrations (1.5 microM) of IVM, two additional open time components of long duration were observed that gave rise to long-lasting bursts of channel activity. Together, the results suggest that the binding of IVM to the higher affinity site increases current amplitude by reducing channel desensitization, whereas the binding of IVM to the lower affinity site slows the deactivation of the current predominantly by stabilizing the open conformation of the channel. 相似文献
3.
ATP-activated P2X3 receptors of sensory ganglion neurons contribute to pain transduction and are involved in chronic pain signaling. Although highly homologous (97%) in rat and human species, it is unclear whether P2X3 receptors have identical function. Studying human and rat P2X3 receptors expressed in patch-clamped human embryonic kidney (HEK) cells, we investigated the role of non-conserved tyrosine residues in the C-terminal domain (rat tyrosine-393 and human tyrosine-376) as key determinants of receptor function. In comparison with rat P2X3 receptors, human P2X3 receptors were more expressed and produced larger responses with slower desensitization and faster recovery. In general, desensitization was closely related to peak current amplitude for rat and human receptors. Downsizing human receptor expression to the same level of the rat one still yielded larger responses retaining slower desensitization and faster recovery. Mutating phenylalanine-376 into tyrosine in the rat receptor did not change current amplitude; yet, it retarded desensitization onset, demonstrating how this residue was important to functionally link these two receptor states. Conversely, removing tyrosine from position 376 strongly down-regulated human receptor function. The different topology of tyrosine residues in the C-terminal domain has contrasting functional consequences and is sufficient to account for species-specific properties of this pain-transducing channel. 相似文献
4.
Flores RV Hernández-Pérez MG Aquino E Garrad RC Weisman GA Gonzalez FA 《Molecular and cellular biochemistry》2005,280(1-2):35-45
Purification of HA-tagged P2Y2 receptors from transfected human 1321N1 astrocytoma cells yielded a protein with a molecular size determined by SDS-PAGE
to be in the range of 57–76 kDa, which is typical of membrane glycoproteins with heterogeneous complex glycosylation. The
protein phosphatase inhibitor, okadaic acid, attenuated the recovery of receptor activity from the agonist-induced desensitized
state, suggesting a role for P2Y2 receptor phosphorylation in desensitization. Isolation of HA-tagged P2Y2 nucleotide receptors from metabolically [32P]-labelled cells indicated a (3.8 ± 0.2)-fold increase in the [32P]-content of the receptor after 15 min of treatment with 100 μM UTP, as compared to immunoprecipitated receptors from untreated
control cells. Receptor sequestration studies indicated that ∼40% of the surface receptors were internalized after a 15-min
stimulation with 100 μM UTP. Point mutation of three potential GRK and PKC phosphorylation sites in the third intracellular
loop and C-terminal tail of the P2Y2 receptor (namely, S243A, T344A, and S356A) extinguished agonist-induced receptor phosphorylation, caused a marked reduction
in the efficacy of UTP to desensitize P2Y2 receptor signalling to intracellular calcium mobilization, and impaired agonist-induced receptor internalization. Activation
of PKC isoforms with phorbol 12-myristate 13-acetate that caused heterologous receptor desensitization did not increase the
level of P2Y2 receptor phosphorylation. Our results indicate a role for receptor phosphorylation by phorbol-insensitive protein kinases
in agonist-induced desensitization of the P2Y2 nucleotide receptor. (Mol Cell Biochem xxx: 35–45, 2005) 相似文献
5.
Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations 总被引:2,自引:0,他引:2
Activation and desensitization kinetics of the rat P2X1 receptor at nanomolar ATP concentrations were studied in Xenopus oocytes using two-electrode voltage-clamp recording. The solution exchange system used allowed complete and reproducible solution exchange in <0.5 s. Sustained exposure to 1-100 nM ATP led to a profound desensitization of P2X1 receptors. At steady-state, desensitization could be described by the Hill equation with a K1/2 value of 3.2 +/- 0.1 nM. Also, the ATP dependence of peak currents could be described by a Hill equation with an EC50 value of 0.7 microM. Accordingly, ATP dose-effect relationships of activation and desensitization practically do not overlap. Recovery from desensitization could be described by a monoexponential function with the time-constant tau = 11.6 +/-1.0 min. Current transients at 10-100 nM ATP, which elicited 0.1-8.5% of the maximum response, were compatible with a linear three-state model, C-O-D (closed-open-desensitized), with an ATP concentration-dependent activation rate and an ATP concentration-independent (constant) desensitization rate. In the range of 18-300 nM ATP, the total areas under the elicited current transients were equal, suggesting that P2X1 receptor desensitization occurs exclusively via the open conformation. Hence, our results are compatible with a model, according to which P2X1 receptor activation and desensitization follow the same reaction pathway, i.e., without significant C to D transition. We assume that the K1/2 of 3.2 nM for receptor desensitization reflects the nanomolar ATP affinity of the receptor found by others in agonist binding experiments. The high EC50 value of 0.7 microM for receptor activation is a consequence of fast desensitization combined with nonsteady-state conditions during recording of peak currents, which are the basis of the dose-response curve. Our results imply that nanomolar extracellular ATP concentrations can obscure P2X1 receptor responses by driving a significant fraction of the receptor pool into a long-lasting refractory closed state. 相似文献
6.
P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular regions to receptor time-course. Swapping either the extracellular loop or both transmembrane domains (TM1 and -2) between the P2X1 and P2X2 receptors had no effect on the time-course of ATP currents in the recipient receptor. These results suggest that the agonist binding and channel-forming portions of the receptor do not play a major role in the control of the time-course. In contrast replacing the amino terminus of the P2X1 receptor with that from the non-desensitizing P2X2 receptor (P2X1-2N) slowed desensitization, and the mirror chimera induced rapid desensitization in the P2X2-1N chimera. These reciprocal effects on time-course can be replicated by changing four variant amino acids just before the first transmembrane (TM1) segment. These pre-TM1 residues also had a dominant effect on chimeras where both TMs had been transferred; mutating the variant amino acids 21-23 to those found in the P2X2 receptor removed desensitization from the P2X1-2TM1/-2 chimera, and the reciprocal mutants induced rapid desensitization in the non-desensitizing P2X2-1TM1/-2 chimera. These results suggest that the intracellular amino terminus, in particular the region just before TM1, plays a dominant role in the regulation of the time-course of ATP evoked P2X receptor currents. 相似文献
7.
The intracellular amino and carboxy termini of P2X receptors have been shown to contribute to the regulation of ATP evoked currents. In this study we produced, and expressed in Xenopus oocytes, individual alanine point mutants of positively charged amino acids (eight lysine, seven arginine and one histidine) in the intracellular domains of the human P2X1 receptor. The majority of these mutations had no effect on the amplitude, time-course or rectification of ATP evoked currents. In contrast the mutant K367A was expressed at normal levels at the cell surface however ATP evoked currents were reduced by >99% and desensitised more rapidly demonstrating a role of K367 in channel regulation. This is similar to that previously described for T18A mutant channels. Co-expression of T18A and K367A mutant P2X1 receptors produced larger ATP evoked responses than either mutant alone and suggests that these amino and carboxy terminal regions interact to regulate channel function. 相似文献
8.
Purinergic P2 receptors and gap junctions are two groups of proteins involved in the transmission of ICWs (intercellular calcium waves) between astrocytes. The extent to which ICWs spread among these glial cells depends on the amount of ATP released, which can occur through membrane channels, as well as other pathways. Our previous studies have shown that the pore-forming P2X7R (P2X7 receptor) contributes to the amplification of ICW spread by providing sites of ATP release through Panx1 (Pannexin1) channels. To gain insight into the signal transduction events mediating this response we compared the properties of the P2X7R–Panx1 complex in astrocytes from a mouse strain (C57Bl/6) containing a naturally occurring point mutation (P451L) in the C-terminus of the P2X7R to that of non-mutated receptors (Balb/C mice). Electrophysiological, biochemical, pharmacological and fluorescence imaging techniques revealed that the P451L mutation located in the SH3 domain (a Src tyrosine kinase-binding site) of the C-terminus of the P2X7R attenuates Panx1 currents, ATP release and the distance of ICW spread between astrocytes. Similar results were obtained when using the Src tyrosine inhibitor (PP2) and a membrane-permeant peptide spanning the P451L mutation of the P2X7R of the C57Bl6 astrocytes. These results support the participation of a tyrosine kinase of the Src family in the initial steps mediating the opening of Panx1 channels following P2X7R stimulation and in the transmission of calcium signals among astrocytes. 相似文献
9.
Schwiebert EM Liang L Cheng NL Williams CR Olteanu D Welty EA Zsembery A 《Purinergic signalling》2005,1(4):299-310
In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose
that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular
domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover,
its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second,
we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data
in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation
of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and
paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands
as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes
in membrane potential. 相似文献
10.
Gyula Diszhzi Zsuzsanna . Magyar Erika Lisztes Edit Tth-Molnr Pter P. Nnsi Rudi Vennekens Balzs I. Tth Jnos Almssy 《The Journal of biological chemistry》2021,297(3)
Transient receptor potential cation channel subfamily M member 4 (TRPM4) is a Ca2+-activated nonselective cation channel that mediates membrane depolarization. Although, a current with the hallmarks of a TRPM4-mediated current has been previously reported in pancreatic acinar cells (PACs), the role of TRPM4 in the regulation of acinar cell function has not yet been explored. In the present study, we identify this TRPM4 current and describe its role in context of Ca2+ signaling of PACs using pharmacological tools and TRPM4-deficient mice. We found a significant Ca2+-activated cation current in PACs that was sensitive to the TRPM4 inhibitors 9-phenanthrol and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). We demonstrated that the CBA-sensitive current was responsible for a Ca2+-dependent depolarization of PACs from a resting membrane potential of −44.4 ± 2.9 to −27.7 ± 3 mV. Furthermore, we showed that Ca2+ influx was higher in the TRPM4 KO- and CBA-treated PACs than in control cells. As hormone-induced repetitive Ca2+ transients partially rely on Ca2+ influx in PACs, the role of TRPM4 was also assessed on Ca2+ oscillations elicited by physiologically relevant concentrations of the cholecystokinin analog cerulein. These data show that the amplitude of Ca2+ signals was significantly higher in TRPM4 KO than in control PACs. Our results suggest that PACs are depolarized by TRPM4 currents to an extent that results in a significant reduction of the inward driving force for Ca2+. In conclusion, TRPM4 links intracellular Ca2+ signaling to membrane potential as a negative feedback regulator of Ca2+ entry in PACs. 相似文献
11.
Shemon AN Sluyter R Stokes L Manley PW Wiley JS 《Biochemical and biophysical research communications》2008,365(3):515-520
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X7 receptor-mediated 86Rb+ (K+) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced 86Rb+-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC50 of ∼5 μM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X7. This compound also inhibited ATP-induced ethidium+ influx into B-lymphocytes and P2X7-transfected-HEK-293 cells, as well as ATP-induced 86Rb+-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X7-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X7 receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X7 receptor. 相似文献
12.
Drill Matthew Jones Nigel C. Hunn Martin O’Brien Terence J. Monif Mastura 《Purinergic signalling》2021,17(2):215-227
Purinergic Signalling - The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on... 相似文献
13.
Statins have both cholesterol lowering and anti-inflammatory activities, whether mechanisms underlying their activities are independent remains unclear. The ATP-gated P2X(4) receptor is a pro-inflammatory mediator. Here, we investigate the action of fluvastatin and other cholesterol depleting agents on native and recombinant human P2X(4) receptor. Fluvastatin and mβCD suppressed P2X(4)-dependent calcium influx in THP-1 monocytes, without affecting P2Y receptor responses. mβCD or filipin III suppressed the current density of recombinant human P2X(4) receptors. Human P2X(2) was insensitive to cholesterol depletion. Cholesterol depletion had no effect on intrinsic P2X(4) receptor properties as judged by ATP concentration-response relationship, receptor rundown or current decay during agonist occupancy. These data suggest fluvastatin suppresses P2X(4) activity in monocytes through cholesterol depletion and not by modulating intrinsic channel properties. 相似文献
14.
P2X7 receptors are ATP-gated ion channels that contribute to inflammation and cell death. They have the novel property of showing marked facilitation to repeated applications of agonist, and the intrinsic channel pore dilates to allow the passage of fluorescent dyes. A 60-s application of ATP to hP2X7 receptors expressed in Xenopus oocytes gave rise to a current that had a biphasic time course with initial and secondary slowly developing components. A second application of ATP evoked a response with a more rapid time to peak. This facilitation was reversed to initial levels following a 10-min agonist-free interval. A chimeric approach showed that replacement of the pre-TM1 amino-terminal region with the corresponding P2X2 receptor section (P2X7–2Nβ) gave responses that quickly reached a steady state and did not show facilitation. Subsequent point mutations of variant residues identified Asn-16 and Ser-23 as important contributors to the time course/facilitation. The P2X7 receptor is unique in having an intracellular carboxyl-terminal cysteine-rich region (Ccys). Deletion of this region removed the secondary slowly developing current, and, when expressed in HEK293 cells, ethidium bromide uptake was only ∼5% that of WT levels, indicating reduced large pore formation. Dye uptake was also reduced for the P2X7–2Nβ chimera. Surprisingly, combination of the chimera and the Ccys deletion (P2X7–2NβdelCcys) restored the current rise time and ethidium uptake to WT levels. These findings suggest that there is a coevolved interaction between the juxtatransmembrane amino and carboxyl termini in the regulation of P2X7 receptor gating. 相似文献
15.
16.
Izumi Sugihara 《The Journal of general physiology》1998,111(2):363-379
Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3). 相似文献
17.
Claire M. Nichols Oleksandr V. Povstyan Anthony P. Albert Dmitry V. Gordienko Omar Khan Georgios Vasilikostas Teck K. Khong Andrew Wan Marcus Reddy Maksym I. Harhun 《Purinergic signalling》2014,10(4):565-572
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca2+]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca2+]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.
Electronic supplementary material
The online version of this article (doi:10.1007/s11302-014-9415-6) contains supplementary material, which is available to authorized users. 相似文献18.
Drugs targeting different calcium channel subtypes have strong therapeutic potential for future drug development for cardiovascular disorders, neuropsychiatric diseases and cancer. This study aims to design and synthesize a new series of C2 substituted dihydropyrimidines to mimic the structure features of third generation long acting dihydropyridine calcium channel blockers and dihydropyrimidines analogues. The target compounds have been evaluated as blockers for CaV1.2 and CaV3.2 utilizing the whole-cell patch clamp technique. Among the tested compounds, compound 7a showed moderate calcium channel blockade activity against CaV3.2. Moreover, the predicted physicochemical properties and pharmacokinetic profiles of the target compounds recommend that they can be considered as drug-like candidates. The results highlight some significant information for the future design of lead compounds as calcium channel blockers. 相似文献
19.
P2X receptors are a family of seven ligand-gated ion channels (P2X1-P2X7) that open in the presence of ATP. We used alanine-scanning mutagenesis and patch clamp photometry to study the role of the first transmembrane domain of the rat P2X2 receptor in cation permeability and flux. Three alanine-substituted mutants did not respond to ATP, and 19 of the 22 functional receptors resembled the wild-type receptor with regard to the fraction of the total ATP-gated current carried by calcium or the permeability of calcium relative to cesium. The remaining three mutants showed modest changes in calcium dynamics. Two of these occurred at sites (Gly30 and Phe44) that are unlikely to interact with permeating cations in a meaningful way. The third was a conserved tyrosine (Tyr43) that may form an inter-pore binding site for calcium. The data suggest that, with the possible exception of Tyr43, the first transmembrane domain contributes little to the permeation properties of the P2X2 receptor. 相似文献
20.
Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits 总被引:3,自引:0,他引:3
P2X receptors are ligand-gated ion channels activated by extracellular ATP. In expression systems, P2X subunits form homo- and heterotrimeric receptors. Heteromerization is also likely to occur in vivo as (i) most P2X subunits show overlapping distribution in different tissues and (ii) the functional properties of many native P2X receptors differ from those of heterologously expressed homomeric receptors. Here, we used the Xenopus laevis oocyte expression system to test for heteromerization of P2X1 and P2X4 subunits. Upon co-injection, P2X4 subunits were co-purified with hexahistidyl-tagged P2X1 subunits indicating heteromerization. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis of these P2X complexes excluded artificial aggregation and confirmed that both subunits were present in trimeric complexes of the same size. Two-electrode voltage-clamp experiments revealed functional P2X receptors with kinetic properties resembling homomeric P2X4 receptors and a pharmacological profile similar to homomeric P2X1 receptors. Thus, application of alpha,beta-methylene ATP evoked a slowly desensitizing current sensitive to the antagonists suramin and 2',3'-O-(2,4,6-trinitrophenyl)-ATP. This study provides for the first time biochemical and functional evidence for the formation of heteromeric P2X(1+4) receptors. These receptors may account for native P2X mediated responses that until now could not be correlated with previously described recombinant P2X receptors. 相似文献