首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Among 23 germline mutations identified in the APC screening of 45 familial adenomatous polyposis (FAP) patients, we have found 10 different novel frameshift mutations in 11 apparently unrelated patients. In two cases, an additional missense mutation was detected. One previously described as a causative germline mutation (S2621C), associated with a 1-bp insertion (4684insA) on the opposite allele, did not segregate with the FAP phenotype in the family and was therefore considered as being non-pathogenic. The other (Z1625H) was located 2 codons before a 1-bp deletion (4897delC). Both mutations were transmitted together from an FAP father to his affected son. The FAP phenotype of these 10 novel truncating mutations was clinically documented within their kindreds. Important variability was observed in the phenotype. Interestingly, we noted that a mutation (487insT) localized at the boundary of the 5’ attenuated APC phenotype region in two unrelated families resulted in classical polyposis. A clear-cut genotype-phenotype correlation could be drawn in only two instances. In one family, a 4684insA mutation led to a mild polyposis associated with early inherited osteomas and, in the family bearing the double mutation (Z1625H+4897delC), the phenotype was obviously a 3′ attenuated type. Our data illustrate the wide genetic and phenotypic heterogeneity of this condition between and within the families, making the establishment of correlations complex and any prediction in this disease difficult, although targeting the mutation site may be helpful in some specific cases. Received: 11 February 1997 / Accepted: 11 April 1997  相似文献   

3.
Familial Adenomatous Polyposis (FAP) is a premalignant disease of the gastrointestinal tract inherited as an autosomal dominant trait assigned to chromosome 5q21. The 15 exons of the APC gene responsible for the defect were amplified from the DNA of one FAP patient. SSCP analysis of the amplified DNA revealed a variant conformer of exon 10. The sequencing of the cloned PCR product showed a 1 base insertion at position 1370, creating a stop codon four nucleotides downstream. SSCP analysis of 20 family members and nucleotide sequencing of exon 10 in three affected members confirmed the Mendelian inheritance of the mutant allele.  相似文献   

4.
Germline mutations of the adenomatous polyposis coli (APC) tumor-suppressor gene result in the hereditary colorectal cancer syndrome familial adenomatous polyposis (FAP). Almost all APC mutations that have been identified are single-nucleotide alterations, small insertions, or small deletions that would truncate the protein product of the gene. No well-characterized intragenic rearrangement of APC has been described, and the prevalence of this type of mutation in FAP patients is not clear. We screened 49 potential FAP families and identified 26 different germline APC mutations in 30 families. Four of these mutations were genomic rearrangements resulting from homologous and nonhomologous recombinations mediated by Alu elements. Two of these four rearrangements were complex, involving deletion and insertion of nucleotides. Of these four rearrangements, one resulted in the deletion of exons 11 and 12 and two others resulted in either complete or partial deletion of exon 14. The fourth rearrangement grossly altered the sequence within intron 14. Although this rearrangement did not affect any coding sequence of APC at the genomic DNA level, it caused inappropriate splicing of exon 14. These rearrangements were initially revealed by analyzing cDNAs and could not have been identified by using mutation detection methods that screened each exon individually. The identification of a rearrangement that did not alter any coding exons yet affected the splicing further underscores the importance of using cDNA for mutation analysis. The identification of four genomic rearrangements among 30 mutations suggests that genomic rearrangements are frequent germline APC mutations.  相似文献   

5.
Colorectal cancer has become the third leading cause of death from cancer in Taiwan. Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of multiple adenomatous polyps in the colon and rectum. The gene responsible for FAP(APC) was cloned in 1991. Extensive analyses of the mutation spectra in FAP kindreds have been performed in different countries, but the results have been highly variable (30–80%). In this study, we used denaturing high-performance liquid chromatography (DHPLC) followed by automatic sequencing in an effort to establish the mutation spectrum of APC from DNA of peripheral blood cells. Among the 6 FAP probands analyzed, mutations were detected in 3 (50%), 2 of which were novel. The first novel mutation was at codon 2166, with a C to T transition, resulting in a stop codon. The second novel mutation was at codon 1971, with a C to G transversion, resulting in an amino acid change from serine to cysteine. The third mutation involved an A insertion in the sequence of -AAAAAA- at codons 1554–1556, which created a downstream stop codon (codon 1558). This study is the first to report mutation analysis in Taiwanese FAP probands.  相似文献   

6.
Background

Familial adenomatous polyposis (known also as classical or severe FAP) is a rare autosomal dominant colorectal cancer predisposition syndrome, characterized by the presence of hundreds to thousands of adenomatous polyps in the colon and rectum from an early age. In the absence of prophylactic surgery, colorectal cancer (CRC) is the inevitable consequence of FAP. The vast majority of FAP is caused by germline mutations in the adenomatous polyposis coli (APC) tumor suppressor gene (5q21). To date, most of the germline mutations in classical FAP result in truncation of the APC protein and 60% are mainly located within exon 15.

Material and methods

In this first nationwide study, we investigated the clinical and genetic features of 52 unrelated Algerian FAP families. We screened by PCR-direct sequencing the entire exon 15 of APC gene in 50 families and two families have been analyzed by NGS using a cancer panel of 30 hereditary cancer genes.

Results

Among 52 FAP index cases, 36 had 100 or more than 100 polyps, 37 had strong family history of FAP, 5 developed desmoids tumors, 15 had extra colonic manifestations and 21 had colorectal cancer. We detected 13 distinct germline mutations in 17 FAP families. Interestingly, 4 novel APC germline pathogenic variants never described before have been identified in our study.

Conclusions

The accumulating knowledge about the prevalence and nature of APC variants in Algerian population will contribute in the near future to the implementation of genetic testing and counseling for FAP patients.

  相似文献   

7.
Germ-line mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP). Genotype-phenotype correlation studies in patients with FAP have demonstrated associations of certain variants of the disease with mutations at specific sites within the APC gene. In a large FAP family, we identified a frameshift mutation located in the alternatively spliced region of exon 9. Phenotypic studies of affected family members showed that the clinical course of FAP was delayed, with gastrointestinal symptoms and death from colorectal carcinoma occurring on average 25 and 20 years later than usual, respectively. The numbers of colorectal adenomas differed markedly among affected individuals and the location of colorectal cancer lay frequently in the proximal colon. Our findings suggest that the exon 9 mutation identified in the pedigree is associated with late onset of FAP. The atypical phenotype may be explained by the site of the mutation in the APC gene. Analysis of the APC protein product indicated that the exon 9 mutation did not result in a detectable truncated APC protein. Given the location of the mutation within an alternatively spliced exon of APC, it is conceivable that normal APC proteins are produced from the mutant allele by alternative splicing.  相似文献   

8.
Germline mutation in the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), a heritable form of colorectal cancer. We have previously reported two novel mutations that delete exons 11 and 14 of the APC gene, respectively, at the cDNA level without any splice junction defects at the genomic level. We describe here the precise breakpoints of the two mutations and the possible mechanisms leading to the genomic rearrangement. The first rearrangement is most likely a topoisomerase-I-mediated non-homologous recombination resulting in a 2-kb deletion that deletes exon 11 of the APC gene. Both 5' and 3' breakpoints have two topoisomerase I recognition sites and runs of pyrimidines within the 10-bp sequences in their vicinity. Further, the 3' breakpoint has an adenine-thymidine-rich region. This is probably the first report of a topoisomerase-I-mediated germline mutation in a tumor suppressor gene. The second rearrangement is most likely an Alu-Alu homologous recombination resulting in a 6-kb deletion encompassing exon 14. The Alu elements at the 5' and 3' breakpoints include the 26-bp core sequence thought to stimulate recombination. In both rearrangements, partial sequences from the long interspersed nuclear element family are in the vicinity of the breakpoints. Other than serving as markers for regions of DNA damage, their precise role in the recombination events, if any, is unclear. Both deletions result in truncated APC proteins missing the beta-catenin- and axin-binding domains, resulting in severe polyposis and cancer.  相似文献   

9.
Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. We report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. We see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC.  相似文献   

10.
11.
Large deletions in the APC (adenomatous polyposis coli) gene, causing familial adenomatous polyposis (FAP), cannot easily be detected by conventional mutation-detection techniques. Therefore, we have developed two independent quantitative methods for the detection of large deletions, encompassing one or more exons, of APC. Multiplex ligation-dependent probe amplification (MLPA) is performed in one reaction for the initial quantification of all APC exon copy numbers. Subsequently, quantitative real-time PCR (QRT-PCR) is used to verify the results obtained in the MLPA reaction. The identification of a deletion of the whole APC gene in a patient with classical FAP is described. The mutation was detected with the two quantitative methods and further verified on chromosomal level by the use of FISH (fluorescence in situ hybridization) on metaphase spreads. Furthermore, a large deletion covering exons 11-13 of the APC gene was detected in two apparently unrelated families. This deletion was further verified and characterized with long-range PCR. The MLPA test ensures a sensitive high-throughput screening for large deletions of the APC gene and can easily be implemented in the diagnostic testing for FAP.  相似文献   

12.
Adenomatous polyps are an intermediate in the pathway to colon carcinoma. An inherited disorder, familial adenomatous polyposis coli (APC), is characterized by hundreds to thousands of adenomatous polyps. A previously reported family had colon cancer associated with a low average but highly heterogenous number of colonic polyps, this phenotype mapped to the APC locus on 5q. Four new families have been ascertained in which the phenotypic pattern was different from classical polyposis but similar to that of the "prototype" kindred reported earlier. By multilocus linkage analysis, the gene responsible for the disease phenotype was mapped, with a high level of confidence, to the APC locus in two of the four families with the attenuated or variant form of polyposis (AAPC); the results for the two remaining kindreds were inconclusive. A combined maximum LOD score of approximately 7.6 at a recombination fraction of 0 was obtained when the results were summed over the four pedigrees with markers closest to the APC locus. The establishment of genetic linkage in such families may point to the APC locus as having a more significant role in inherited predispositions to colorectal cancer than was previously thought.  相似文献   

13.
Summary Salla disease is a lysosomal storage disorder due to impaired transport of free sialic acid across the lysosomal membrane. The clinical presentation of this autosomal recessive trait is severe psychomotor retardation from early infancy on. In order to determine the gene locus for the disease we have initiated a genetic linkage study using polymorphic gene markers in rep-resentative family material comprising about 60% of all families known to be affected with Salla disease. Here we present an exclusion map based on combined linkage data from 64 informative loci on 19 autosomes. Theoretically, at least 55% of the genome has been excluded as a locus for the disease gene, while some chromosome areas, particularly the long arm of chromosome 2, are highlighted as possible sites for the gene locus.  相似文献   

14.
Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. We studied two families that both presented a phenotype different than that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described.  相似文献   

15.
Cytogenetically visible deletions that include the adenomatosis polyposis coli (APC) locus have repeatedly been reported in mentally handicapped polyposis patients. We report on a family with a submicroscopic deletion of about 200 kb including more than the 3 half of the APC gene and the adjacent DPI gene. The deletion was detected by linkage analysis with flanking and intragenic markers and proven by in situ hybridisation with intragenic cosmid clones. All the familial adenomatous polyposis (FAP) patients and persons at risk in the family show normal behaviour and intelligence. Thus, it is conceivable that at least some of the FAP patients in whom mutations could not be identified by routine methods may have large but submicroscopic deletions.  相似文献   

16.
Families of people known to have familial adenomatous polyposis are screened for signs of the disease by yearly examination of the bowel. Multiple areas of congenital hypertrophy of the retinal pigment epithelium have been described in patients with familial adenomatous polyposis. To assess the reliability of this marker 40 patients with familial adenomatous polyposis, representing all 25 pedigrees with living affected members in the Northern region''s polyposis registry, were examined for hypertrophy of the retinal pigment epithelium. All had multiple lesions, ranging in number from two to over 40. None of the 35 controls had more than two lesions. Ocular examination is valuable for detecting carriers of the gene for familial adenomatous polyposis before their symptoms develop.  相似文献   

17.
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth‐related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA‐seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292‐4293‐Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA‐seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene‐based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high‐resolution reference for treating other syndromes associated with supernumerary teeth.  相似文献   

18.
19.
Wnt signaling is important for the differentiation of the Paneth cell lineage in the small intestine. However, abnormal Wnt signaling predisposes to intestinal tumorigenesis in the familial adenomatous polyposis (FAP) mouse model. Vaccination with dendritic cells fused with tumor cells from FAP mice, in which Wnt signaling is constitutively activated, induced humoral immunity and suppressed intestinal tumor development. We identified the novel antigen Apa1 (Adenomatous polyposis antigen 1) recognized by antibodies in vaccinated mouse serum. Apa1 was localized in the Paneth cell-like tumor cells showing cytoplasmic β-catenin accumulation and also in normal Paneth cells at the bottom of the crypts. Phospholipase A2 (Pla2g2a), known to act as an anti-bacterial agent and a major suppressor of intestinal tumors, was also expressed in the Paneth cells. These results suggest that Apa1 might be involved in anti-microbial defense and could influence tumor development in FAP mice via modulation of commensal microbiota.  相似文献   

20.
Summary The EF5.44 locus is in close proximity to the chromosome 5 region to which the genetic defect responsible for familial adenomatous polyposis has been mapped. We have devised two oligonucleotides that promote the specific polymerase chain reaction (PCR) amplificiation of a 365-bp sequence in this region. Analysis by denaturing gradient gel electrophoresis of the resulting fragment has unravelled individual differences that could be identified as a single base pair change in aMnlI restriction site. This PCR assayable polymorphism increases the informativeness at this locus, and should be useful in the presymptomatic diagnosis of familial adenomatous polyposis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号