首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The development and photosynthetic capacity of chloroplastsformed in green light in cultured spinach leaf discs has beenstudied. At intensities of 4 to 6 mW cm–2 green lightstimulates chloroplast replication to about the same extentas white, blue, and red light. However, practically no chloroplastreplication occurs in discs grown in low intensity green orwhite light but considerable chloroplast growth takes place.Ultrastructural studies have shown that these chloroplasts,which can be two to five times the area of control plastids(high intensity white light), have an essentially normal thylakoidsystem. Double isotope labelling experiments have establishedthat the synthesis of chloroplast ribosomal-RNA is similar incontrols and in discs grown in low intensity green or whitelight. On a per unit chlorophyll basis the CO2 fixation rateof spinach discs grown in low intensity green (or white) lightsaturates with increasing light intensity or increasing CO2concentration at values well below control discs. In this respecttheir photosynthetic characteristics bear a similarity to thoseof shade plants.  相似文献   

2.
Changes in Chloroplast DNA Levels during Growth of Spinach Leaves   总被引:1,自引:0,他引:1  
In young spinach leaves, 1–4 mm long, 7–10% of thetotal DNA of the leaf was chloroplast (pt) DNA. Growth in theseleaves was mainly by cell division with plastid division keepingpace with cell division and maintaining about 10 plastids percell. About 1% of the leaf cells were formed in 4.0 mm leaves.Both cell division and cell expansion contribute to the nextstage of leaf growth, which was quantitatively the major periodof new cell formation, nuclear DNA synthesis and ptDNA synthesis.Relative to the nuclear DNA level ptDNA levels rose to 21% ofthe total DNA and chloroplast.plastome copy numbers from 1500to 5000 per cell while chloroplast numbers rose from 10 to 30per cell. In the final period of leaf growth, cell expansionwas the main determinant of growth and chloroplast number percell rose to 180. In contrast to young leaves, newly emergedcotyledons contained 20% of their DNA as ptDNA and, during cellexpansion, cell number per cotyledon doubled. On average, thecells became octoploid, and chloroplast numbers and plastomecopy numbers rose to 500 and 22 000 per cell respectively. Similarlevels of nuclear ploidy, chloroplast number and plastome copynumber were induced in the first leaf pair of spinach followingdecapitation. When senescence was induced in mature leaves byshading, no loss of nuclear or ptDNA occurred. Following theonset of leaf yellowing and a form of senescence induced bynitrogen deficiency in leaves which had not fully expanded,there was preferential loss of ptDNA which fell from 8200 to3700 plastome copies per cell over an 11 d period. Key words: Spinach, Chloroplast, DNA, Ploidy  相似文献   

3.
Chloroplast growth and replication have been studied in spinachleaf dises cultured on sterile nutrient agar under lights ofdifferent spectral qualities. Over the intensity range 0.1-5mW cm–2 both red (632 nm) and blue (488 nm) laser lightstimulate chloroplast division to the same extent as white light.By contrast low intensities (0.22–0.65 m Wcm–2 ofboth white or green (525 nm) light are ineffective for chloroplastreplication but permit normal chlorophyll synthesis and greaterthan normal chloroplast growth. The large plastids of disesgrown in green light divide when exposed to high-intensity whitelight.  相似文献   

4.
DALE  J. E. 《Annals of botany》1982,50(6):851-858
Plants of Heron wheat were grown at 20 and 15 °C and inquantum flux densities of 400 and 200 µmol m–2 s–1.At completion of expansion of the first or second leaf, plantswere transferred between temperatures and quantum flux densities.Final size and cell number were measured for each of the firstfour main-stem leaves. Leaf area was affected only slightlyby treatment and effects on leaf length and width were alsosmall. It was concluded that leaf extension rate, which waslower at the lower temperature and in the lower light regime,is inversely related to the duration of leaf expansion. Leafdry wt was higher for plants grown in high light and for plantsgrown at 15 °C; transfer treatments led to readjustmentswhereby dry wts of leaves expanded after transfer resembledthose of leaves on plants kept throughout in the post-transferconditions. Leaf cell number was not affected by treatment but mean drywt per cell was significantly greater in high light, and forthe first two leaves, at 15 °C. There was a major and highlysignificant effect of treatment on the ratio of dry: fresh wtper cell, this being larger for leaves in high light. Transfertreatments between light regimes led to rapid changes in expandingleaves as was found for leaf dry wt. It was concluded that theexpanding grass leaf is much less dependent on older leavesto provide the necessary materials for cell division and expansionthan is the dicotyledon leaf. It is suggested that the increasein cell dry wt in high light is associated with an increasein cell wall material which is under photomorphogenic control. Triticum aestivum, wheat, leaf growth, cell division, cell expansion, cell size  相似文献   

5.
Chloroplast replication was induced in mature tobacco leaf tissue (Nicotiana tabacum L.) by culturing leaf discs on a sterile medium composed of salts and sucrose. Chloroplast replicaton is greatly enhanced by the addition of kinetin to this medium. Kinetin also enhances cell enlargement, but cell division does not occur. Chloroplast replication is nonsynchronous and proceeds most rapidly when the cell enlargement rate decreases. Chloroplast replication is light-dependent, but cell enlargement occurs in both light and dark. Chloroplast replication resumes when discs cultured in the dark are returned to the light. It appears that chloroplast replication is related to cell expansion. The possibility of inducing synchronous replication of chloroplasts in tobacco cells is discussed.  相似文献   

6.
The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.  相似文献   

7.
Plants of watermelon [Citrullus lanatus(Thunb.) Matsum. &Nakai, cv. Early Yates] were grown for up to 3 months aftergermination in controlled environment cabinets, and variousaspects of vegetative growth and fruit development were measured.Effects of light intensity were studied by comparing growthat 8, 16 and 32 klx at constant temperature and daylength (25°C, 14 h). Effects of daylength were studied by comparing8, 14 and 24 h at constant light intensity and temperature (32klx, 25 °C), and effects of tem perature were studied bycomparing 20°, 25°, 30°, 35° and 40 °C atconstant light intensity and day- length (32 klx, 14 h). Withincreasing light intensity and daylength lateral growth waspromoted whereas main shoots were less affected. Increase intemperature above 25 °C resulted in longer main shoots andprolific lateral growth, due both to more and to longer laterals.Environmental differences had little effect on internode lengthbut did affect the size of basal leaves. However, an increasein total leaf area at higher temperatures or with Continuouslight was mainly due to more leaves rather than larger leaves.The presence of developing fruit greatly reduced vegetativegrowth of plants. Main shoot length, lateral growth, numberof leaves, and even size of individual leaves, were all reduced.This reduction did not apply to d. wt of whole plants. Fruitingplants were very efficient, on a leaf area basis, in accumulatingd. wt. At 25 °C at the two higher light intensities with14 h days the presence of one developing fruit was inhibitoryto the setting of any subsequent fruit. With short days or lowlight, more fruits were set but they were small. With continuouslight or high temperature more than one fruit could developand they were large.  相似文献   

8.
The amounts of chloroplast DNA and nuclear DNA in the cellsof spinach leaf discs cultutred under different light regimeshave been measured. The cellular level of ctDNA increased 10-foldin discs cultured in white light and was accompanied by a 2-foldincrease in the cellular level of nuclear DNA. In low intensitygreen light the cellular level of ctDNA increased 6-fold butwas not accompanied by an increase in the level of nuclear DNA.No net DNA synthesis on a per cell basis occurred in discs culturedin darkness. Chloroplasts of uncultured leaf discs containedan average of 83 plastome copies. The number of plastome copiesper chloroplast after 6 days culture decreased to 36 copiesin darkness, remained almost constant at 73 copies in whitelight and increased to 215 copies in low intensity green light. These results suggest that ctDNA replication can be independentof cellular levels of nuclear DNA and chloroplast division.  相似文献   

9.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   

10.
Summary Some factors affecting the chloroplast replication were studied using the leaf cells of the mossPlagiomnium trichomanes. There was a significant positive correlation between chloroplast number per cell and cell volume in leaves of any developmental stage. However, when the detached leaves were cultured on nutrient agar, it was observed that the chloroplast replication occurred without cell enlargement regardless of the developmental stage of leaves. This implies that cell enlargement is not an essential factor for the chloroplast replication, but one of the environmental factors affecting it. Light is essential for the chloroplast replication which response to the light intensity. In the dark, there was little increase in chloroplast number per cell. With a light intensity of 50 lux, the increase rate of chloroplast number per cell was about half of that with 3,000 lux. Day length also affected significantly the chloroplast replication.  相似文献   

11.
Intact chloroplasts from young pea leaves were able to incorporate[3H]thymidine into DNA at relatively high rates (50 pmol mg–1chlorophyll h–1 or more), using light as the sole energysource. The intact plastids were also able to synthesize DNAin darkness, but only if ATP and MgCl2 (MgATP) were both present.The rates of MgATP-driven assimilation in darkness were equalto or greater than light-driven activity. Neither light nordithiothreitol pretreatments enhanced thymidine incorporationin darkness, suggesting that enzymes of chloroplast DNA (ctDNA)biosynthesis are not regulated via a thioredoxin-type system.Although exogenous nucleosides (other than [3H]thymidine) werenot an absolute requirement, dramatically elevated rates ofincorporation (over 300 pmol mg–1 chlorophyll h–1)were seen when adenosine, cytidine, guanosine and thymidinewere supplied in combination (500 mmol m–3 each). RadiolabelledDNA synthesized by the isolated chloroplasts was prepared usinga new heat extraction method. After digestion by restrictionendonucleases, ctDNA synthesized in organello was found to givetypical autoradiography patterns for chloroplast DNA. ExonucleaseIII studies suggested that 5% to 15% of the newly synthesizedDNA might be in a closed circular form. MgATP-driven synthesisin darkness was highly age-dependent. Chloroplasts from young(6 to 8-d-old) plants, or alternatively the youngest leavesof more mature plants, were 4–10 times more active thanthose from older tissues. Although these data do not establishconclusively that replication-type synthesis was occurring inthe isolated chloroplasts, they are consistent with this suggestion. Key words: Chloroplast DNA replication, isolated chloroplasts, chloroplast DNA synthesis  相似文献   

12.
The effects of light and temperature on flowering and pollentube growth were studied in watermelon [Citrullus lanatus(Thunb.)Matsum. and Nakai, cv. Early Yates] plants grown in controlledenvironment cabinets. All female flowers were pollinated inone group of plants; none was pollinated in the other group. Temperature increase from 25 °C to 35 °C with daylengthof 14 h and light intensity of 32 klx caused increase in flowernumber per plant, proportion of male flowers, ovary length anddiameter, ovule number per ovary, rate of pollen tube growthand percentage of penetrated ovules at 24 hand 48 h after pollination.Very few flowers were produced at 40 °C, but there was ahigh proportion of male flowers. Increase in daylength from14 h to 24 h at 25 °C with light intensity of 32 klx alsoincreased number of flowers per plant, ovary length and diameterand number of ovules per ovary but sex expression and rate ofpollen tube growth were unaffected. Reduction in daylength from14 h to 8 hat 25 °C and light intensity of 32 klx and reductionin light intensity from 32 klx to 8 klx at 25 °C and 14h daylength both produced an increase in the percentage of immatureovules. The presence of fruit on the vine resulted in fewerflowers per plant and in reduced ovary legnth and diameter underall conditions tested. The results are discussed in relation to the fruiting responseof the plant.  相似文献   

13.
Chloroplast preparations from the young primary leaves of Phaseolusvulgaris L. cv. Canadian Wonder carry out the DNA-dependentincorporation of UTP into RNA at rates between 8 and 14 pmolUTP µg–1 chlorophyll h–1. It is estimatedthat 90% of the activity was localized in the chloroplasts.The incorporation proceeded for between 20 and 30 min at 35°C. The maximum rates of RNA synthesis were attained atpH 8.3, in the presence of 15 mM MgCl2. Chloroplasts were alsoactive, to a lesser extent, with 1.5 mM MnCl2. The simultaneouspresence of MnCl2 and MgCl2 resulted in inhibition of activity.Nuclear material prepared from young P. vulgaris leaves incorporatedUTP at a rate of about 12 pmol UTP µg–1 DNA h–1.On a chloroplast (Tritonsoluble) DNA basis chloroplast activitywas over 40-fold that of nuclei. Methods of solubilizing chloroplastRNA polymerase were explored. Yields of over 75% were achieved,but methods suitable for one species were not always successfulwhen applied to another. The highest yields of the P. vulgarisenzyme were obtained using EDTA and KCl. All methods resultedin solubilization of DNA. RNA synthesis by the soluble P. vulgarisenzyme proceeded for more than 40 min at 35 °C.  相似文献   

14.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

15.
Chloroplast DNA in Expanding Spinach Leaves   总被引:2,自引:0,他引:2  
The proportion of chloroplast DNA in total DNA from spinachleaves has been measured using the second order reassociationkinetics of a 3H-labelled chloroplast DNA probe in total DNAextracts. There was no significant difference between the proportionof chloroplast DNA in the basal and distal halves of 2 cm leavesand in the distal halves of 5, 8, and 10 cm leaves. The meanof all the observations was 21.1 ± 0.7%. There was littlechange in the average total DNA content of cells from any ofthe leaves but cells from larger leaves contained 130–170chloroplasts while cells from the basal half of 2 cm leavescontained about 20 chloroplasts which were smaller than thosefrom the larger leaves. Consequently the average number of copiesof the plastome per chloroplast in large leaves was about 30(5 x 10–15 g DNA) and in the smaller chloroplasts in thebase of 2 cm leaves was 200 (32 x 10–15 g DNA). Stainingwith the DNA fluorochrome 4, 6-diamidino-2 phenyl indole (DAPI)showed 10–15 plastid nucleoid areas in chloroplasts oflarger leaves, suggesting there are 2–3 copies of theplastome per plastid nucleoid.  相似文献   

16.
During the growth of beet leaves from 2 to 3 to 25 to 30 centimeters, the leaf cells increase in size, the average number of chloroplasts per cell increases from 11 to 65 and the amount of chloroplast DNA per cell increases from 1100 to 1900 plastome copies. The average number of copies of the plastome per chloroplast decreases from 104 in 2 to 3-centimeter leaves to 29 in 25 to 30-centimeter leaves during a period when the chloroplasts undergo two to three rounds of division and increase diameter from 1.5 to 4.9 micrometers. This result is at variance with previously published studies of beet chloroplasts but agrees with the conclusions reached in more recent studies of pea and spinach and wheat leaf cell expansion.  相似文献   

17.
The effect of benzyladenine (BA) on the diurnal changes in DNAand Chl contents per chloroplast and chloroplast replicationin primary leaves of bean plants (Phaseolus vulgaris L.) grownunder a 16 h light/8 h dark cycle was studied. Experiments weremade on primary leaves in the early expansion phase, where celldivision had been completed but chloroplasts were replicating.In untreated controls, chloroplast number, Chl content and freshweight per leaf showed daily periodic changes. Chl content perchloroplast increased in the light period every day, and freshweight per leaf increased most rapidly in the early dark period.Chloroplast number per leaf increased rapidly in the early darkperiod on day 9, though the increase began a little earlierand was less sharp on days 8 and 10. During these periods, DNAcontent per chloroplast was decreasing due to chloroplast divisionas chloroplast DNA (ctDNA) per leaf remained unchanged throughoutthe experimental period. BA induced increases in Chi contentper chloroplast, ctDNA content and fresh weight per leaf within6 h of its application, regardless of whether it was appliedat or 10 h after the beginning of the light period. Applicationof BA at 10 h in the light period shifted the start of chloroplastreplication by 6 h compared to that in untreated controls. However,when BA was applied at the beginning of illumination, the startof chloroplast replication showed the same relative change intime as above. 5-Fluorodeoxyuridine (5-FdU) promptly preventedBA-induced increase in Chl content and chloroplast number perleaf as well as ctDNA content per leaf.  相似文献   

18.
In earlier work the effects of light intensity over the range31 to 250 J cm–2 day–1 and carbon dioxide concentrationfrom 325 to 900 ppm with 8-h days at 18.3 °C and 16-h nightsat 15.6 °C were described. The present paper is concernedwith three further experiments with light levels up to 375 Jcm–2 day–1 (which corresponds to the daily totalin a glasshouse in southern England in early May or August andthe intensity is approximately that of mid-winter sunshine),carbon dioxide concentration up to 1500 ppm, and day temperaturesof 18.3 to 29.4 °C. Final plant weight was increased by light over the range 125–375J cm–2 day–1 and by carbon dioxide over the range325–900 ppm, with positive interaction between them; thisinteraction was increased by raising the temperature to 23.9°C and somewhat more at 29.4 °C day temperature. Leaf-arearatio and specific leaf area were reduced by increasing eitherlight or carbon dioxide but there was little effect of temperature.Leaf-weight ratios were uniform within experiments but therewere small consistent differences between one experiment andthe other two which also affected leaf-area ratios. Mean unit leaf rate was scarcely affected by day temperatureover the range investigated. There were the usual increasesdue to increased light and carbon dioxide concentration anda consistent difference in absolute value between one experimentand the other two. These differences in mean unit leaf rateare illustrated in detail in the ontogenetic trend of unit leafrate and plant size. Lower unit leaf rates were to a considerableextent compensated for by increased leaf-area ratios in theusual way. Despite the substantial differences in day temperature the specificwater contents (g water g dry weight–1) differed little,showing in the majority of cases higher values in the highertemperature for otherwise similar treatment combinations. Flower development was somewhat delayed at 23.9 °C day temperature,and substantially so at 29.4 °C. Lateral branch length wasincreased at 23.9 °C and excessively so at 29.4 °C.This reveals quite clearly that a temperature optimum for vegetativegrowth may not be the optimum for flowering performance norproduce a desirable plant shape. Despite the marked effects of temperature on rate of flowerdevelopment, the relationship between flower development andthe ratio of flower to total weight was the same for all treatmentcombinations in all three experiments and coincident with thatreported earlier. Gasometric determinations indicated that respiratory loss bythe whole plant was a smaller proportion of net photosyntheticgain at a temperature of 29.4 °C than at 18.3 °C andwas likewise a smaller proportion at 1500 ppm carbon dioxidethan at 325 ppm. If photorespiration of leaves is assumed tobe as great as their dark respiration, the respiratory lossesare in the range of 31–50 per cent of the gross gain.Greater rates of photorespiration would increase the proportionaterespiratory loss.  相似文献   

19.
Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis.  相似文献   

20.
Pyke, K. A. and Leech, R. M. 1987. Cellular levels of ribulose1,5 bisphosphate carboxylase and chloroplast compartment sizein wheat mesophyll cells.—J. exp. Bot. 38: 1949–1956. The amount of the photosynthetic enzyme ribulose 1,5 bisphosphatecarboxylase (RUBISCO),as determined in mesophyll cells in primarywheat leaves was related to the size of the chloroplast compartmentwithin the cell for wheat species of three ploidy levels. Asimilar comparison was made for several genotypes of the hexaploidbreadwheat Triticum aestivum. Estimation of total chloroplastvolume per mesophyll cell was made assuming chloroplasts tobe oblate spheroid in shape. A significant correlation was found between the amount of RUBISCOper cell and the total chloroplast volume per cell for diploid,tetraploid and hexaploid wheat species. A significant correlationbetween cellular RUBISCO level and total chloroplast volumeper cell was also observed for a range of genotypes of the hexaploidT. aestivum but these genotypes of T. aestivutn accumulate agreater amount of RUBISCO per unit chloroplast volume than doany other wheat species. For these genotypes of T. aestivumthe stromal concentration of RUBISCO was estimated at 0·5mol m–3 with a ribulose Msphosphate binding site concentrationof 4·0 mol m–3. These results are discussed with respect to a gene dosage hypothesisto explain the accumulation of RUBISCO in leaf mesophyll cells. Key words: Ribulose, bisphosphate carboxylase, wheat chloroplasts, mesophyll cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号