首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-stranded DNA breaks in Zajdela's ascitic hepatoma and transformed hamster fibroblasts were caused by treating alive cells with 1% dimethylsulfoxide for 2 h or 100 micrograms/ml bleomycin for 5 min and tested by alkaline and neutral DNA elutions. Electron microscopy of thin sections revealed decompaction of the loosened approximately 25 nm globules within diffuse chromatin into thin fibrillar mesh while supranucleosomal structure of the compact chromatin remained untouched. The chromatin enhanced its affinity for cationic dyes and contrast agents. It is concluded that the diffuse chromatin possesses torsional stress of DNA superhelicity and its loosened subunits represent a form for its organization. They probably correspond to the functionally active (dynamic) nucleosomes which display destruction under DNA domain relaxation caused by one-strand breaks.  相似文献   

2.
The technique of neutral elution has been used to study DNA fragmentation in SV-40-transformed Hungarian hamster fibroblasts of 4/21 strain. Accumulation of DNA double-strand breaks was observed in growth-arrested cells. The breaks were repaired after the growth resumed. It is suggested that double-strand breaks are a sum of one-strand breaks.  相似文献   

3.
Sarcolysine-induced damaging and reparative processes in the primary structure of tumour cell DNA have been studied. The presence of low sarcolysine concentrations (1 mkM) in the cell culture during the first two hours of incubation caused suturing of DNA molecules. The increase of the incubation time from 4 to 18 hours and the rise in the drug concentration (by 10.20 times and more) resulted in intensive accumulation of one-strand breaks. However, we have not observed the appearance of high-molecular DNA, which is the evidence of the completion of the reparative process. The impulse treatment with sarcolysine (1 hour, 10 mkM) with subsequent drug removal caused the irreversible damage of DNA reparative processes at the stage of short fragments' suturing.  相似文献   

4.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

5.
DNA breaks and repair in mouse leukemia L1210 cells treated with 3 different types of cross-linkers, mitomycin C (MMC), 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) and SN-07 (a macromolecular antibiotic), were studied. Measured in D37 values, MMC gave the highest number of cross-links per lethal 'hit' directly after the 1-h treatment in the alkaline elution assay, followed by ACNU and SN-07. A good dose-response increase in induced interstrand DNA cross-linking frequency was observed in cells treated with 2.5-10 micrograms/ml MMC and with 10-100 micrograms/ml ACNU for 1 h with and without 24-h post-incubation. After 6-h post-incubation, the highest frequency of cross-linking was observed in cells treated with 2.5 micrograms/ml MMC and 30 micrograms/ml ACNU, while cross-link production continued in the cells treated with SN-07 for 12-h post-incubation. No significant increase in DNA breaks was observed in cells treated with MMC throughout 24-h post-incubation. The highest frequency of single-strand DNA breaks in cells treated with ACNU was observed immediately after the treatment and they disappeared after 6-h post-incubation. After 24-h post-incubation, a marked enhancement of the DNA breaks was observed in cells treated with SN-07 and the cells contained double-strand DNA breaks also. RNA synthesis was not affected in the cells treated with 10 micrograms/ml MMC and slightly inhibited to 70% of control in those treated with 100 micrograms/ml ACNU, while DNA synthesis in both cells was significantly inhibited after 24-h post-incubation. By contrast, both RNA and DNA synthesis were completely inhibited in cells treated with 8.0 micrograms/ml SN-07.  相似文献   

6.
The modes of genotoxicity of a novel macromolecular antitumor antibiotic (SN-07) were examined using both prokaryotic and eukaryotic cells in vitro. The antibiotic induced a frameshift-type reverse mutation in Ames Salmonella typhimurium TA98 at 1.6-400 ng/plate with and without S9 mix. SN-07 also induced chromosomal aberrations and a forward mutation (6-TGr) in Chinese hamster V79 cells after 1 h treatment at 12.5-100 ng/ml without metabolic activation. The alkaline elution technique revealed that SN-07 induced interstrand DNA cross-linking dose-dependently after treatment with 2.5-10 micrograms/ml for 1 h followed by elution at pH 12.1, but it did not induce the dose-dependent cross-linking after the same treatment followed by elution at pH 12.6. It was also found that SN-07 induced single-strand DNA breaks (pH 12.1) and alkali-labile (pH 12.6) sites after treatment with 0.1-10 micrograms/ml for 1 h followed by 24-h post-incubation.  相似文献   

7.
1-Nitropyrene and its chemically synthesised derivatives were investigated for their cytotoxicity and ability to induce DNA-strand breaks in Chinese hamster lung fibroblasts. Both 1-nitrosopyrene (0.25-60 micrograms/ml) and 1-aminopyrene (0.25-25 micrograms/ml) were cytotoxic, and induced the formation of DNA lesions, which were measured as DNA single-strand breaks after sedimentation in alkaline sucrose-density gradients. Higher doses of 1-aminopyrene (25-60 micrograms/ml) inhibited the formation of DNA single-strand breaks. 1-Nitropyrene was not toxic (0.25-60 micrograms/ml) and induced low levels of detectable DNA strand breaks, whilst N-acetyl-1-aminopyrene was inactive. The post-mitochondrial supernatant fraction of Aroclor-induced rat-liver containing 4 mM NADPH (S9 mix) did not promote the activation of 1-nitropyrene. In fact DNA strand breaks induced by either 1-nitropyrene or 1-nitrosopyrene was abolished in the presence of S9 mix. The 1-nitropyrene reduced intermediate, N-hydroxy-1-aminopyrene was synthesised by the reduction of 1-nitrosopyrene with ascorbic acid. In the presence of ascorbic acid, 1-nitrosopyrene caused a 5-fold increase in the number of DNA single-strand breaks when compared to cells treated with 1-nitrosopyrene alone. The results are discussed in terms of the metabolic activation of 1-nitropyrene and 1-aminopyrene in Chinese hamster lung cells.  相似文献   

8.
The inhibition of DNA synthesis and the appearance of single-strand breaks and/or alkali-labile sites in DNA and DNA-membrane cross-links were observed after formaldehyde treatment of cultured LL-line cells. It was shown that supercoiling of cell chromatin is not affected under these conditions. The initiation of DNA replication after the exposure with 10(-4) M formaldehyde occurs also without disturbance. Under the higher concentration of formaldehyde (10(-3) M), DNA elongation was inhibited. It is suggested that cross-linking of DNA with other molecules and structures for example membranes, stabilizes DNA supercoiling (chromatine). This conformational stability is essential for normal initiation of DNA replication, although the parenteral DNA contains many lesions in its primary and secondary structures.  相似文献   

9.
Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. gamma-irradiation of isolated chromatin degrades the DNA to lower molecular weight. The yield of single-strand breaks in the DNA is 0.02 single-strand breaks per krad-10(6) dalton, calculated from a dose-range of &--400 krad and covering a DNA molecular weight range of 2 X 10(7)-1.4 X 10(5). There is a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 dV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin.  相似文献   

10.
S A Lesko  J L Drocourt  S U Yang 《Biochemistry》1982,21(20):5010-5015
DNA-protein and DNA interstrand cross-links were induced in isolated chromatin after treatment with H2O2 and ferrous ethylenediaminetetraacetate (EDTA). Retention of DNA on membrane filters after heating of chromatin in a dissociating solvent indicated the presence of a stable linkage between DNA and protein. Treatment of protein-free DNA with H2O2/Fe2+-EDTA did not result in enhanced filter retention. Incubation of cross-linked chromatin with proteinase K completely eliminated filter retention. Resistance to S1 nuclease after a denaturation-renaturation cycle was used to detect DNA interstrand cross-links. Heating the treated chromatin at 45 degrees C for 16 h and NaBH4 reduction enhanced the extent of interstrand cross-linking. The following data are consistent with, but do not totally prove, the hypothesis that cross-links are induced by hydroxyl radicals generated in Fenton-type reactions: (1) cross-linking was inhibited by hydroxyl radical scavengers; (2) the degree of inhibition of DNA interstrand cross-links correlated very closely with the rate constants of the scavengers for reaction with hydroxyl radicals; (3) cross-linking was eliminated or greatly reduced by catalase; (4) the extent of cross-linking was directly related to the concentration of Fe2+-EDTA. Partial inhibition of cross-linking by superoxide dismutase indicates that superoxide-driven Fenton chemistry is involved. The data indicate that DNA cross-linking may play a role in the manifestation of the biological activity of agents or systems that generate reactive hydroxyl radicals.  相似文献   

11.
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.  相似文献   

12.
The focal accumulation of DNA repair factors, including the MRE11/Rad50/NBS1 (MRN) complex and the phospho-histone variant γ-H2A.X, is a key cytological feature of the DNA damage response (DDR). Although these foci have been extensively studied by light microscopy, there is comparatively little known regarding their ultrastructure. Using correlative light microscopy and electron spectroscopic imaging (LM/ESI) we have characterized the ultrastructure of chromatin and DNA repair foci within the nuclei of normal human fibroblasts in response to DNA double-strand breaks (DSBs). The induction of DNA DSBs by etoposide leads to a global decrease in chromatin density, which is accompanied by the formation of invaginations of the nuclear envelope as revealed by live-cell microscopy. Using LM/ESI and the immunogold localization of γ-H2A.X and MRE11 within repair foci, we also observed decondensed 10nm chromatin fibers within repair foci and the accumulation of large non-chromosomal protein complexes over three hours recovery from etoposide. At 18 h after etoposide treatment, we observed a close juxtapositioning of PML nuclear bodies and late repair foci of γ-H2A.X, which exhibited a highly organized chromatin arrangement distinct from earlier repair foci. Finally, the dual immunogold labeling of MRE11 with either γ-H2A.X or NBS1 revealed that γ-H2A.X and the MRN complex are sub-compartmentalized within repair foci at the sub-micron scale. Together these data provide the first ultrastructural comparison of γ-H2A.X and MRN DNA repair foci, which are structurally dynamic over time and strikingly similar in organization.  相似文献   

13.
Radiation-induced formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) and DNA strand breaks was studied in cultured cells with normal or modified chromatin structure. Human fibroblasts were irradiated as cellular monolayers (intact cells), nuclear monolayers (permeabilized cells with intact chromatin structure), and nucleoid monolayers (permeabilized and salt-treated cells with histone-free DNA). 8-oxo-dG was assayed with reverse-phase HPLC coupled to an electrochemical detector and strand breaks with the alkali unwinding assay. Depletion of low-molecular-weight nuclear components increased the radiation-induced formation of 8-oxo-dG fivefold compared to twofold for the formation of strand breaks. Removal of both low-molecular-weight components and histones increased the yield of 8-oxo-dG 46-fold and the yield of strand breaks 43-fold. Removal of only the histones thus leads to a two times greater increase in the yield of strand breaks compared to 8-oxo-dG. Addition of radical scavengers to nuclear and nucleoid monolayers provided a significantly better protection against the formation of 8-oxo-dG relative to the formation of strand breaks. These results suggest that in intact cells, 8-oxo-dG is preferentially formed in histone-free structures of chromatin, indicating a larger role for the indirect effect of radiation in the formation of 8-oxo-dG than in the formation of strand breaks.  相似文献   

14.
Upon DNA damage, p53-binding protein 1 (53BP1) relocalizes to sites of DNA double-strand breaks and forms discrete nuclear foci, suggesting its role in DNA damage responses. We show that 53BP1 changed its localization from the detergent soluble to insoluble fraction after treatment of cells with x-ray, but not with ultraviolet or hydroxyurea. Either DNase or phosphatase treatment of the insoluble fraction released 53BP1 into the soluble fraction, showing that 53BP1 binds to chromatin in a phosphorylation-dependent manner after X-irradiation of cells. 53BP1 was retained at discrete nuclear foci in X-irradiated cells even after detergent extraction of cells, showing that the chromatin binding of 53BP1 occurs at sites of DNA double-strand breaks. The minimal domain for focus formation was identified by immunofluorescence staining of cells ectopically expressed with 53BP1 deletion mutants. This domain consisted of conserved Tudor and Myb motifs. The Tudor plus Myb domain possessed chromatin binding activity in vivo and bound directly to both double-stranded and single-stranded DNA in vitro. This domain also stimulated end-joining by DNA ligase IV/Xrcc4, but not by T4 DNA ligase in vitro. We conclude that 53BP1 has the potential to participate directly in the repair of DNA double-strand breaks.  相似文献   

15.
The influence of higher-order chromatin structure on the non-random distribution of DNA double-strand breaks induced by high-LET radiation was investigated. Five different chromatin structures (intact cells, condensed and decondensed chromatin, nucleoids and naked genomic DNA) from GM5758 cells or K562 cells were irradiated with (137)Cs gamma-ray photons and 125 keV/microm nitrogen ions (16-25 MeV/nucleon). DNA was purified with a modified lysis procedure to avoid release of heat-labile sites, and fragment size distributions and double-strand break yields were analyzed by different pulsed-field gel electrophoresis protocols. Whereas double-strand breaks in photon-irradiated cells were randomly distributed, irradiation of intact K562 cells with high-LET nitrogen ions produced an excess of non-randomly distributed DNA fragments 10 kb-1 Mbp in size. Complete removal of proteins eliminated this non-random component. There was a gradual increase in the yield of double-strand breaks for each chromatin decondensation step, and compared to intact cells, the yields for naked DNA (in buffer without scavengers) increased 83 and 25 times after photon and nitrogen-ion irradiation, respectively. The corresponding relative biological effectiveness decreased from 1.6-1.8 for intact cells to 0.49 for the naked DNA. We conclude that the organization of DNA into chromatin fiber and higher-order structures is responsible for the majority of non-randomly distributed double-strand breaks induced by high-LET radiation. However, our data suggest a complex interaction between track structure and chromatin organization over several levels.  相似文献   

16.
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11–14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12–13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected -H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.M.L. Meyer-Ficca and H. Scherthan contributed equally to this work  相似文献   

17.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


18.
The DNA double-strand breaks (DSBs) that initiate meiotic recombination in Saccharomyces cerevisiae are preceded first by DNA replication and then by a chromatin transition at DSB sites. This chromatin transition, detected as a quantitative increase in micrococcal nuclease (MNase) sensitivity, occurs specifically at DSB sites and not at other MNase-sensitive sites. Replication and DSB formation are directly linked: breaks do not form if replication is blocked, and delaying replication of a region also delays DSB formation in that region. We report here experiments that examine the relationship between replication, the DSB-specific chromatin transition and DSB formation. Deleting replication origins (and thus delaying replication) on the left arm of one of the two parental chromosomes III affects DSBs specifically on that replication-delayed arm and not those on the normally replicating arm. Thus, replication timing determines DSB timing in cis. Delaying replication on the left arm of chromosome III also delays the chromatin transition at DSB sites on that arm but not on the normally replicating right arm. Since the chromatin transition precedes DSB formation and requires the function of many genes necessary for DSB formation, these results suggest that initial events for DSB formation in chromatin are coupled with premeiotic DNA replication.  相似文献   

19.
DNA-protein cross-linking by ultraviolet radiation was measured in human fibroblasts by an adaptation of the method of DNA alkaline elution. To measure cross-linking, a controlled frequency of DNA single-strand breaks was introduced by exposing the cells to a low dose of X-ray at 0 degrees C prior to analysis by alkaline elution. The effect of prior exposure of the cells to ultraviolet radiation was to reduce the rate and/or extent of DNA elution from X-irradiated cells. This effect was attributed to DNA-protein cross-linking, since the effect was reversed by treatment of the cell lysates with proteinase-K. Cross-linking in normal human fibroblasts occurred immediately after ultraviolet irradiation, prior to the appearance of DNA single-strand breaks due to excision repair. Upon incubation of normal cells after exposure, to ultraviolet radiation, the cross-linking was partially repaired. In xeroderma pigmentosum cells, cross-links appeared as in normal cells, but there was no repair. Instead, the extent of cross-linking appeared to increase upon incubation after ultraviolet irradiation.  相似文献   

20.
Day 10 rat embryos were exposed in vitro to a monofunctional analog of phosphoramide mustard (MPM) at concentrations of 25 to 200 micrograms/ml (144 to 1,156 X 10(-6) M). After a 24-hour exposure, embryos exhibited a dose-dependent decrease in growth parameters (crown-rump length, number of somites, and protein content) as well as incidence of malformations. Abnormal embryos were characterized by hypoplasia of the prosencephalon as well as hypoplasia of the mandibular arches, tail, and limb buds. Histological analysis revealed abnormal levels of necrotic cells, particularly in the neuroepithelium and surrounding mesenchyme. In all respects embryos exposed to MPM could not be distinguished from embryos exposed to phosphoramide mustard. We also determined using mouse L1210 cells that at the maximum nonlethal concentration used in our embryo exposure experiments, MPM did not cause DNA cross-linking but did cause single-strand DNA breaks. Phosphoramide mustard, at concentrations teratogenic to embryos in vitro, did produce DNA cross-linking. Taken together, our results indicate that although cyclophosphamide (CP)-induced DNA cross-linking may play a role in CP teratogenesis, DNA cross-linking is not an absolute requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号