首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have established the importance of a complex, N-linked oligosaccharide chain, recognized by a monoclonal antibody (mAb 1223), in the formation of sea urchin embryonic skeletal components known as spicules. To further investigate the function of this epitope, mAb 1223 was added to primary mesenchyme (PM) cell cultures prior to spiculogenesis. The antibody did not inhibit cell migration, cell attachment, or synthesis of the filapodial networks upon which the spicules are deposited. However, it did block deposition of mineralized CaCO3 along these filapodia, strongly supporting the previously proposed role for the 1223 epitope in calcium accumulation and/or deposition. Previously the 1223 epitope has been most extensively studied in association with a mesenchyme-specific protein of 130 kDa (msp 130). It has now been established, by Western blot analysis of whole embryo and PM cell extracts using mAb 1223, that two other proteins of 205 and 250 kDa contain the 1223 epitope. A study of the developmental profiles of expression of these glycoproteins revealed that all three were first expressed just prior to spiculogenesis, consistent with a role for any or all of these proteins in this process. Additionally all three proteins incorporated ethanolamine, myristate, and palmitate, the precursors of the glycosylphosphatidylinositol (GPI) anchor. Further labeling studies revealed differences in the metabolic lability of the GPI anchor in the three proteins; pulse-chase studies demonstrated that the ethanolamine moiety was stable in msp 130, but was rapidly chased from the 205-kDa protein (T1/2 = 14 hr). Phosphatidylinositol-specific phospholipase C partially released (50%) msp 130 from the PM cell surface, whereas it had no effect on release of the 205- and 250-kDa proteins. Studies with 35SO4 labeling and PNGase F treatment directly established that all three proteins are sulfated, and that most of the sulfate is attached to the N-linked oligosaccharide chains. Thus, the three major mAb 1223-reactive glycoproteins in PM cells are also the three major proteins containing both sulfated N-linked oligosaccharide chains and GPI anchors. Further investigation of this intriguing correlation may help to define the precise function of the 1223 epitope in the process of spicule formation.  相似文献   

2.
We have previously identified a 130-kD cell surface protein that is involved in calcium uptake and skeleton formation by gastrula stage embryos of the sea urchin Strongylocentrotus purpuratus (Carson et al., 1985. Cell. 41:639-648). A monoclonal antibody designated mAb 1223 specifically recognizes the 130-kD protein and inhibits Ca+2 uptake and growth of the CaCO3 spicules produced by embryonic primary mesenchyme cells cultured in vitro. In this report, we demonstrate that the epitope recognized by mAb 1223 is located on an anionic, asparagine-linked oligosaccharide chain on the 130-kD protein. Combined enzymatic and chemical treatments indicate that the 1223 oligosaccharide contains fucose and sialic acid that is likely to be O-acetylated. Moreover, we show that the oligosaccharide chain containing the 1223 epitope specifically binds divalent cations, including Ca+2. We propose that one function of this negatively charged oligosaccharide moiety on the surfaces of primary mesenchyme cells is to facilitate binding and sequestration of Ca+2 ions from the blastocoelic fluid before internalization and subsequent deposition into the growing CaCO3 skeleton.  相似文献   

3.
The rat monoclonal antibody GoH3 identifies a complex of glycoproteins Ic and IIa on human and mouse platelets. The GoH3 epitope is located on glycoprotein Ic. A novel glycoprotein complex is identified by GoH3 on the surface membranes of mouse mammary epithelial tumor cells. This antigen complex is composed of glycoprotein Ic noncovalently associated with a monomor or a disulfide-linked multimer of a high molecular weight glycoprotein (Ic-binding protein (IcBP]. Glycoprotein Ic is synthesized as a large precursor with asparagine N-linked high mannose oligosaccharides. Processing of this precursor involves a proteolytic cleavage of the large polypeptides into two smaller disulfide-linked polypeptide chains, Ic alpha (heavy) and Ic beta (light), and conversion of the majority of the high mannose oligosaccharides into complex-type glycans. Likewise, glycoprotein IcBP is initially glycosylated with high mannose asparagine N-linked oligosaccharides which are processed to complex units in the mature form. Association of glycoprotein Ic with IcBP occurs within the cell soon after their synthesis. The kinetics of labeling show non-coordinate processing consistent with the idea that the concentration of glycoprotein Ic limits complex formation and the subsequent processing of glycoprotein IcBP.  相似文献   

4.
The Fc receptor identified by mAb 3G8 (Fc gamma RIII) was isolated by mAb affinity chromatography from 0.5 to 2 x 10(10) neutrophils yielding 33 to 149 micrograms of protein. Iodination of the purified protein identified a polypeptide of broad electrophoretic mobility from Mr 47 to 70 kDa and occasionally a fainter polypeptide at 100 to 130 kDa, which may be dimerized receptor. Two-dimensional isoelectric focusing gel electrophoresis illustrated multiple diffuse polypeptides ranging from a pI of less than 4.7 to 6.5. Treatment of the purified receptor with neuraminidase shifted the mobility of these polypeptides to a more basic pI, ranging from 6 to 8, illustrating the presence of sialic acid residues on Fc gamma RIII. The glycoprotein nature of Fc gamma RIII was characterized by several criteria. The receptor bound to Con A-Sepharose. Treatment of Fc gamma RIII with endoglycosidase H or F, which cleave high mannose and biantennary complex N-linked oligosaccharides, respectively, failed to alter the electrophoretic mobility of the Fc gamma R. Peptide N:glycosidase F, which cleaves all classes of N-linked oligosaccharides, reduced the Mr of Fc gamma RIII by 60% to reveal two poorly resolved polypeptides centered at Mr 25 kDa and ranging from Mr 16 to 28 kDa. Chemical deglycosylation with trifluoromethanesulfonic acid, which cleaves O- and N-linked oligosaccharides except for the asparagine-linked N-acetylglucosamine, reduced the Mr of Fc gamma RIII to 21 to 36 kDa. These results demonstrate that Fc gamma RIII is an acidic complex sialoglycoprotein and suggest that there may be 8 to 15 N-linked oligosaccharide chains on Fc gamma RIII.  相似文献   

5.
1-Deoxynojirimycin was found to inhibit oligosaccharide processing of rat alpha 1-proteinase inhibitor. In normal hepatocytes alpha 1-proteinase inhibitor was present in the cells as a 49,000 Mr high mannose type glycoprotein with oligosaccharide side chains having the composition Man9GlcNAc and Man8GlcNAc with the former in a higher proportion. Hepatocytes treated with 5 mM 1-deoxynojirimycin accumulated alpha 1-proteinase inhibitor as a 51,000 Mr glycoprotein with carbohydrate side chains of the high mannose type, containing glucose as measured by their sensitivity against alpha-glucosidase, the largest species being Glc3Man9GlcNAc. Conversion to complex oligosaccharides was inhibited by the drug. In addition, increasing concentrations of 1-deoxynojirimycin inhibited glycosylation resulting in the formation of some alpha 1-proteinase inhibitor with two instead of three oligosaccharide side chains. 5 mM 1-deoxynojirimycin inhibited the secretion of alpha 1-proteinase inhibitor by about 50%, whereas secretion of albumin was unaffected. The oligosaccharides of alpha 1-proteinase inhibitor secreted from 1-deoxynojirimycin-treated cells were characterized by their susceptibility to endoglucosaminidase H, incorporation of [3H]galactose, and [3H]fucose and concanavalin A-Sepharose chromatography. It was found that 1-deoxynojirimycin did not completely block oligosaccharide processing, resulting in the formation of alpha 1-proteinase inhibitor molecules carrying one or two complex type oligosaccharides. Only these alpha 1-proteinase inhibitor molecules processed to the complex type in one or two of their oligosaccharide chains were nearly exclusively secreted. This finding demonstrates the importance of oligosaccharide processing for the secretion of alpha 1-proteinase inhibitor.  相似文献   

6.
Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing.   总被引:23,自引:0,他引:23  
A D Elbein 《FASEB journal》1991,5(15):3055-3063
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms.  相似文献   

7.
Metalloendoproteases have been implicated in a variety of fusion processes including plasma membrane fusion and exocytosis. As a prerequisite to skeleton formation in the sea urchin embryo, primary mesenchyme cells undergo fusion via filopodia to form syncytia. The spicule is formed within the syncytial cable by matrix and mineral deposition. To investigate the potential involvement of a metalloendoprotease in spiculogenesis, the effect of inhibitors of this enzyme on skeleton formation was studied. Experiments with primary mesenchyme cells in vitro and in normal embryos revealed that skeleton formation was blocked by these inhibitors. These findings implicate a metalloendoprotease in spiculogenesis; such an enzyme has been demonstrated in homogenates of primary mesenchyme cells. The most likely site of action of the metalloendoprotease is at the cell membrane fusion stage and/or at subsequent events requiring membrane fusion.  相似文献   

8.
Swainsonine, an inhibitor of glycoprotein processing, inhibits the formation of the normal oligosaccharide chain of the G protein of vesicular stomatitis virus. Thus, when vesicular stomatitis virus was grown in baby hamster kidney cells in the presence of swainsonine (15 to 500 ng/ml) and labeled with [2-(3)H]mannose, the oligosaccharide portion of the G protein was completely susceptible to the action of endoglucosaminidase H. However, the normal viral glycoprotein is not susceptible to this enzyme. Various enzymatic treatments and methylation studies of the mannose-labeled oligosaccharides suggest that swainsonine causes the formation of a hybrid-type oligosaccharide having an oligomannosyl core (Man(5)GlcNAc(2)-Asn) characteristic of neutral oligosaccharides plus the branch structure (NeuNAc-Gal-GlcNAc) characteristic of the complex oligosaccharides. A structure for this hybrid oligosaccharide is proposed. Swainsonine had no effect on the incorporation of [(14)C]leucine into viral proteins, nor did it change the number of PFU produced in these cultures. It did, however, slightly decrease the incorporation of [(3)H]glucosamine and increase the incorporation of [(3)H]mannose. Vesicular stomatitis virus raised in the presence of swainsonine bound much more tightly to columns of concanavalin A-Sepharose than did control virus. Swainsonine had to be added within the first 4 or 5 h of virus infection to be effective. Thus, when 100 ng of the alkaloid per ml was added at any time within the first 3 h of infection, essentially all of the glycoprotein was susceptible to digestion by endoglucosaminidase H. However, when swainsonine was added 4 h after the start of infection, 30% of the glycopeptides became resistant to endoglucosaminidase H; at 5 h, 70% were resistant. The effect of swainsonine was reversible since removal of the alkaloid allowed the cells to form the normal complex glycoproteins. However, the time of removal was critical in terms of oligosaccharide structure.  相似文献   

9.
When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.  相似文献   

10.
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.  相似文献   

11.
The posttranslational processing of the asparagine-linked oligosaccharide chain of the major myelin glycoprotein (P0) by Schwann cells was evaluated in the permanently transected, adult rat sciatic nerve, where there is no myelin assembly, and in the crush injured nerve, where there is myelin assembly. Pronase digestion of acrylamide gel slices containing the in vitro labeled [3H]mannose and [3H]fucose P0 after electrophoresis permitted analysis of the glycopeptides by lectin affinity and gel filtration chromatography. The concanavalin A-Separose profile of the [3H]mannose P0 glycopeptides from the transected nerve revealed the high-mannose-type oligosaccharide as the predominant species (72.9%), whereas the normally expressed P0 glycoprotein that is assembled into the myelin membrane in the crushed nerve contains 82.9-91.9% of the [3H]mannose radioactivity as the complex-type oligosaccharide chain. Electrophoretic analysis of immune precipitates verified the [3H]mannose as being incorporated into P0 for both the transected and crushed nerve. The high-mannose-type glycopeptides of the transected nerve isolated from the concanavalin A-Sepharose column were hydrolyzed by endo-beta-N-acetylglucosaminidase H, and the oligosaccharides were separated on Biogel P4. Man8GlcNAc and Man7GlcNAc were the predominant species with radioactivity ratios of 12.5/7.2/1.4/1.0 for the Man8, Man7, Man6, and Man5 oligosaccharides, respectively. Jack bean alpha-D-mannosidase gave the expected yields of free Man and ManGlcNAc from these high-mannose-type oligosaccharides. The data support the notion that at least two alpha-1,2-mannosidases are responsible for converting Man9GlcNAc2 to Man5GlcNAc2. The present experiments suggest distinct roles for each mannosidase and that the second mannosidase (I-B) may be an important rate-limiting step in the processing of this glycoprotein with the resulting accumulation of Man8GlcNAc2 and Man7GlcNAc2 intermediates. Pulse chase experiments, however, demonstrated further processing of this high-mannose-type oligosaccharide in the transected nerve. The [3H]mannose P0 glycoprotein with Mr of 27,700 having the predominant high-mannose-type oligosaccharide shifted its Mr to 28,500 with subsequent chase. This band at 28,500 was shown to have the complex-type oligosaccharide chain and to contain fucose attached to the core asparagine-linked GlcNAc residue. The extent of oligosaccharide processing of this down-regulated glycoprotein remains to be determined.  相似文献   

12.
A method was developed for obtaining detailed oligosaccharide profiles from [2-3H]mannose- or [6-3H]fucose-labeled cellular glycoproteins. The oligosaccharides were segregated first according to class, using endo-beta-N-acetylglucosaminidase H (Endo H) to release the high mannose species, and then with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F), which provided a complete array of complex oligosaccharide chains. The high mannose and complex oligosaccharides were fractionated subsequently according to net negative charge on QAE-Sephadex. High resolution gel filtration on TSK HW-40(S) resolved the neutral high mannose population into species of the type Man9-5 N-acetylglucosamine. Desialylation of the complex chains with neuraminidase allowed resolution of these oligosaccharides into their corresponding asialo bi-, tri-, and tetraantennary species. Fibroblasts from normal and cystic fibrosis cells were analyzed for differences in their glycosylation patterns using these techniques. Over 95% of the [2-3H]mannose-labeled glycoproteins were susceptible to the combined glycosidase digestions, but no difference in either the high mannose or complex oligosaccharides were observed. Nonetheless, the methodology developed in this study provides an important new approach for investigating oligosaccharides of different cell types and variants of the same type. Metabolic changes induced in cellular glycoproteins, as illustrated by use of the processing inhibitor swainsonine, demonstrated the versatility of this procedure for investigating questions relating to glycoprotein structure and enzyme specificity. Thus, by employing a variation of this method, it was possible to confirm the location of fucose in the core of PNGase F-released hybrid oligosaccharides by the subsequent release with Endo H of the disaccharide, fucosyl-N-acetylglucosamine.  相似文献   

13.
We have examined and compared the host-cell-dependent glycosylation of the G glycoprotein of vesicular-stomatitis virus (Hazelhurst strain) and the E1 and E2 glycoproteins of Sindbis virus replicated by baby-hamster kidney, chicken-embryo fibroblast and mouse L929 monolayer cell cultures. The results of endo-beta-N-acetylglucosaminidase H digestion of viral proteins labelled with [3H]mannose or leucine and Pronase-digested glycopeptides labelled with [3H]mannose indicated that both the G protein and the E1 protein contained a similar mixture of endoglycosidase-resistant oligosaccharides of the complex acidic type and less extensively processed endoglycosidase-sensitive oligosaccharides of the neutral or hybrid type, with a relatively greater content of the endoglycosidase-sensitive oligosaccharides for virus replicated in the chicken as against hamster or mouse cells. A large fraction of the G protein and the majority of the E1 proteins from the mammalian host cells contained acidic-type oligosaccharides at both glycosylation sites, whereas most of the G and E1 glycoproteins from the avian host cells and essentially all of the E2 protein from all three host-cell types contained an acidic-type oligosaccharide at one site and neutral- or hybrid-type oligosaccharide at the other site. The relative increase in neutral- and hybrid-type oligosaccharides with five-mannose core structures observed for the G and E1 proteins of virus released from the avian host cells suggested that two specific steps in oligosaccharide processing (mediated by alpha-mannoside II and N-acetylglucosaminyltransferase I) were less efficient at one of the glycosylation sites of the vesicular-stomatitis-virus G protein and Sindbis-virus E1 protein in the avian as against mammalian host cells.  相似文献   

14.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The high mannose form of rat alpha 1-acid glycoprotein was isolated from rough membranes of rat liver using methods described previously. The high mannose glycopeptides were prepared by Pronase digestion, and oligosaccharides were isolated following digestion with endohexosaminidase-H. The structure of the carbohydrate chains of the high mannose glycopeptide and the oligosaccharides was examined by 300 MHz nuclear magnetic resonance spectroscopy. The glycopeptide contained a mixture of about equal amounts of AsnGlcNAc2Man9 and AsnGlcNAc2Man8. Analysis of the oligosaccharide fraction showed that it consisted of about equal amounts of GlcNAc Man9 and GlcNAc Man8; the GlcNAc Man8 fraction contained 85% of the "A" isomer (which was missing the terminal mannose from the middle antenna). The results suggested that mannose processing of alpha 1-acid glycoprotein in rough membranes of rat liver in vivo occurred only as far as the Man8 structure and that the "A" isomer was the main isomer formed.  相似文献   

16.
We have investigated the oligosaccharide requirements of the UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum. Uteroferrin, an acid hydrolase, was phosphorylated by the three N-acetylglucosaminylphosphotransferases, and the phosphorylated oligosaccharides were isolated and analyzed by ion suppression high performance liquid chromatography. In all three cases, the phosphorylated species contained 6 or more mannose residues. Phosphorylation of the Man5GlcNAc2 oligosaccharide could not be detected even though this was the major species on the native uteroferrin. The Man5GlcNAc2 oligosaccharides lack alpha 1,2-linked mannose residues, whereas the larger oligosaccharides contain 1 or more mannose residues in this linkage. Treatment of intact uteroferrin with an alpha 1,2-specific mannosidase-generated molecules whose oligosaccharides consisted almost entirely of species with 5 mannose residues. The N-acetylglucosaminylphosphotransferases could no longer phosphorylate such molecules. These data indicate that at least 1 alpha 1,2-linked mannose residue must be present on uteroferrin's oligosaccharide for phosphorylation to occur.  相似文献   

17.
We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.  相似文献   

18.
Four developmental stages of sea urchin embryos were labeled with colloidal gold in an attempt to elucidate the intracellular trafficking patterns within the cells that produce the glycoprotein matrix of the embryonic spicule. The primary mesenchyme cells (PMCs) form a syncytium and secrete an organic matrix on which calcium carbonate is laid down to form an endoskeletal spicule. The organic matrix has been isolated and characterized as glycoprotein consisting of four major bands. Polyclonal antibodies to these glycoproteins were used to label embryos from the mesenchyme blastula, early gastrula, late gastrula, and plutei stages of development. The label is concentrated in the Golgi complex and associated vesicles, in secretory vesicles, and in the organic matrix. The density of the labeling increases as development proceeds.  相似文献   

19.
Sea urchin embryo micromeres when isolated and cultured in vitro differentiate to produce spicules. Although several authors have used this model, almost nothing is known about the signaling pathways responsible for initiating skeletogenesis. In order to investigate the potential involvement of phosphorylation events in spiculogenesis, the effect of inhibitors of protein kinases and phosphatases on skeleton formation was studied. Results obtained using both cultured micromeres and embryos revealed that protein tyrosine kinase and phosphatase inhibitors blocked skeleton formation, but not serine/threonine phosphatase inhibitors. The inhibitors showed a dose-dependent effect and when removed from micromere or embryo culture, spicule formation resumed. Inhibition of tyrosine phosphatases resulted in an increase in the tyrosine phosphorylation level of two major proteins and a modest decrease in the expression of the mRNA coding for type I fibrillar collagen. These findings strongly suggest that tyrosine phosphorylation and dephosphorylation is required for micromere differentiation and for normal skeletogenesis during sea urchin embryo development.  相似文献   

20.
N L Kedersha  J S Tkacz  R A Berg 《Biochemistry》1985,24(21):5952-5960
Prolyl hydroxylase is a tetrameric glycoprotein that catalyzes a vital posttranslational modification in the biosynthesis of collagen. The enzyme purified from whole chick embryos (WCE) possesses two nonidentical subunits, alpha and beta, and has been shown by several techniques to reside in the endoplasmic reticulum of chick embryo fibroblasts. The studies described here demonstrate that the larger of the two subunits (alpha) exists in two forms in chick embryo fibroblasts (CEF); these two forms differ in carbohydrate content. The larger alpha subunit, alpha', contains two N-linked high mannose oligosaccharides, each containing eight mannose units; the smaller subunit, alpha, contains a single seven-mannose N-linked oligosaccharide. Both oligosaccharides could be cleaved by endo-beta-N-acetylglucosaminidase H and completely digested with alpha-mannosidase to yield mannosyl-N-acetylglucosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号