首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glucocorticoids (GCs) function, in part, through the ability of the glucocorticoid receptor (GR) to activate gene expression and in part through the transrepression of AP-1 and NF-kappaB. Here we characterize the effect of GR DNA binding domain (DBD) mutations, previously analyzed for changes in the ability to activate gene expression or transrepress AP-1. We have identified a GR mutant capable of distinguishing between transrepression of NF-kappaB and AP-1. Using circular dichroism spectroscopy, we show that this mutation does not appreciably alter GR DBD conformation, suggesting that functional differences between the mutant and wild type protein are the result of an alteration of a specific interaction surface. These data suggest that transrepression of NF-kappaB and AP-1 occurs through distinct protein-protein interactions and argue against the hypothesis that transrepression occurs through competition for a single coactivator protein. Introduction of these mutations into GC-resistant CEM lymphoblastic T cells restored dexamethasone (DEX)-mediated apoptosis as did wild type GR regardless of whether these mutants were transrepression or activation defective. Thus, DEX-mediated apoptosis in transformed T cells is more complex than originally appreciated.  相似文献   

3.
The mechanism by which specific hormonal regulation of gene expression is attained in vivo is a paradox in that several of the steroid receptors recognize the same DNA element in vitro. We have characterized a complex enhancer of the mouse sex-limited protein (Slp) gene that is activated exclusively by androgens but not by glucocorticoids in transfection. Potent androgen induction requires both the consensus hormone response element (HRE) and auxiliary elements residing within the 120-bp DNA fragment C' delta 9. Multiple nonreceptor factors are involved in androgen specificity, with respect to both the elevation of androgen receptor activity and the inactivity of glucocorticoid receptor (GR), since clustered base changes at any of several sites reduce or abolish androgen induction and do not increase glucocorticoid response. However, moving the HRE as little as 10 bases away from the rest of the enhancer allows GR to function, suggesting that GR is repressed by juxtaposition to particular factors within the androgen-specific complex. Surprisingly, some sequence variations of the HRE itself, within the context of C' delta 9, alter the stringency of specificity, as well as the magnitude, of hormonal response. These HRE sequence effects on expression correspond in a qualitative manner with receptor binding, i.e., GR shows a threefold difference in affinities for HREs amongst which androgen receptor does not discriminate. Altering the HRE orientation within the enhancer also affects hormonal stringency, increasing glucocorticoid but not androgen response. The effect of these subtle variations suggests that they alter receptor position with respect to other factors. Thus, protein-protein interactions that elicit specific gene regulation are established by the array of DNA elements in a complex enhancer and can be modulated by sequence variations within these elements that may influence selection of precise protein contacts.  相似文献   

4.
Mechanisms of glucocorticoid signalling   总被引:9,自引:0,他引:9  
  相似文献   

5.
6.
Glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) inactivation are considered to be important in small-intestinal differentiation/maturation. In this study, we found that co-treatment with glucocorticoid hormone agonist dexamethasone and p44/42 MAPK inhibitor PD98059 in intestinal cell line Caco-2 strongly induced GLUT5 gene expression. Glucocorticoid hormone receptor (GR) was translocated from the cytoplasm to the nucleus and de-phosphorylated at serine residue 203 in the nucleus, by combined treatment with dexamethasone and PD98059. The binding of GR, as well as acetylated histones H3 and H4, to the promoter/enhancer region of GLUT5 gene was enhanced by combined treatment with dexamethasone and PD98059. These results suggest that the inactivation of p44/42 MAP kinase enhances glucocorticoid hormone-induced GLUT5 gene expression, probably through controlling the phosphorylation at serine 203 and nuclear transport of GR, as well as histone acetylation on the promoter/enhancer region of GLUT5 gene.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Somatostatin has direct anti-inflammatory actions and participates in the anti-inflammatory actions of glucocorticoids, but the mechanisms underlying this regulation remain poorly understood. The objective of this study was to evaluate whether somatostatin increases glucocorticoid responsiveness by up-regulating glucocorticoid receptor (GR) expression and signaling. Somatostatin promoted a time- and dose-dependent increase in [(3)H]dexamethasone binding to RAW 264.7 macrophages. Cell exposure to 10 nM somatostatin for 18 h promoted a 2-fold increase in the number of GR sites per cell without significant modification of the affinity. Analysis of GR heterocomplex components demonstrated that somatostatin increased the level of heat shock protein (Hsp) 90, whereas the level of GR remained almost unchanged. The increase in Hsp 90 was associated with a decrease in the cleavage of its carboxyl-terminal domain. Evidence for the involvement of calpain inhibition in this process was obtained by the demonstration that 1) somatostatin induced a dose-dependent decrease in calpain activity and 2) calpain inhibitors, calpain inhibitor I and calpeptin, both abolished the cleavage of Hsp 90 and induced a dose-dependent increase in [(3)H]dexamethasone binding. Increases in glucocorticoid binding after somatostatin treatment were associated with similar increases in the ability of GR to transactivate a minimal promoter containing two glucocorticoid response elements (GRE) and to interfere with the activation of nuclear factor-kappaB (NF-kappaB). Thus, the present findings indicate that somatostatin increases glucocorticoid binding and signaling by limiting the calpain-specific cleavage of GR-associated Hsp 90. This mechanism may represent a novel target for intervention to increase glucocorticoid responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号