首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc. Alongside rhodopsin, peripherin/Rom proteins located in the disk rims are thought to be responsible for disk morphology. Here we describe the supramolecular structure of rod outer segment disk membranes and the spatial organization of rhodopsin and peripherin/Rom molecules. Using atomic force microscopy operated in physiological buffer solution, we found that rhodopsin is loosely packed in the central region of the disks, in average about 26?000 molecules covering approximately one third of the disk surface. Peripherin/Rom proteins form dense assemblies in the rim region. A protein-free lipid bilayer girdle separates the rhodopsin and peripherin/Rom domains. The described supramolecular assembly of rhodospin, peripherin/Rom and lipids in native rod outer segment disks is consistent with the functional requirements of photoreception.  相似文献   

2.
Peter Hegemann 《Planta》1997,203(3):265-274
Flagellate green algae such as Chlamydomonas and related genera are guided by their eyes to places where light conditions are optimal for photosynthetic growth. These eyes constitute the simplest and most common visual system found in nature. The eyes contain optics, photoreceptors and the elementary components of a signal-transduction chain. Rhodopsin serves as the photoreceptor, as it does in animal vision. Upon light stimulation, its all-trans-retinal chromophore isomerizes into 13-cis and activates a photoreceptor channel which leads to a rapid Ca2+ influx into the eyespot region. At low light levels, the depolarization activates small flagellar currents which induce in both flagella small but slightly different beating changes resulting in distinct directional changes. In continuous light, Ca2+ fluxes serve as the molecular basis for phototaxis. In response to flashes of higher energy the larger photoreceptor currents trigger a massive Ca2+ influx into the flagella which causes the well-known phobic response. The identification of proteins contributing to this signalling system has just begun with the isolation and cloning of the opsins from Chlamydomonas and Volvox. These plant opsins are highly charged, are not typical seven-helix receptors, and are believed to form a protein complex with the photoreceptor channel. In Spermatozopsis, a G-protein has been found which interacts either directly with the rhodopsin or with the rhodopsin-ion channel complex. By using insertional mutagenesis, genes coding for proteins that are involved in signalling have been tagged. One of them is connected to the flagellar channel and crucial for the flagellar action potential. Elucidation of photoreception in flagellated algae will provide deeper insight into the development of visual systems, starting from single-celled organisms and moving up through higher animals. Received: 10 March 1997 / Accepted: 18 April 1997  相似文献   

3.
Molecular defects in Drosophila rhodopsin mutants   总被引:6,自引:0,他引:6  
Four well characterized Drosophila rhodopsin (ninaE) mutants possess low levels of rhodopsin in their major class of photoreceptors. The molecular defect present in each strain was determined by isolating and sequencing the mutant genes. Two missense mutants encode proteins which have arginine residues positioned within membrane-spanning domains. The third missense mutant eliminates a proline found near an extracellular domain/membrane-spanning domain interface. Thus, the low levels of rhodopsin protein found in these mutants result directly from changes in protein structure which likely affect the positioning and stability of membrane-spanning domains. The fourth and most severe mutation is a nonsense mutation.  相似文献   

4.
Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.  相似文献   

5.
Circadian rhythms are the endogenous oscillations, occurring with a periodicity of approximately twenty-four hours, in the biochemical and behavioral functions of organisms. In mammals, the phase and period of the rhythm are synchronized to the daily light-dark cycle by light input through the eye. Certain retinal degenerative diseases affecting the photoreceptor cells, both rods and cones, in the outer retina reveal that classical opsins (i.e., rhodopsin and color opsins located in these cells) are essential for vision, but are not required for circadian photoreception. The mammalian cryptochromes and melanopsin (and possibly other opsin family pigments) have been proposed as circadian photoreceptor pigments that exist in the inner retina. Genetic analysis indicates that the cryptochromes, which contain flavin and folate as the light-absorbing cofactors, are the primary circadian photoreceptors. The classical photoreceptors in the outer retina, and melanopsin or other minor opsins in the inner retina, may perform redundant functions in circadian rhythmicity.  相似文献   

6.
《Bio Systems》2007,87(1-3):3-17
Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.  相似文献   

7.
Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.  相似文献   

8.
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.  相似文献   

9.
The deep-sea squid, Todarodes pacificus, possesses well-developed parolfactory vesicles as extraocular photoreceptors connected with the brain. The ventral set of vesicles forms a thread approximately 3mm long and looks orange owing to photopigments. The vesicle mainly consists of receptor cells, each of which is similar in structure to the visual cell, carrying rhabdomeres in the distal process and lamellated myeloid bodies in the proximal part. Recently we noticed that a crude extract of the vesicles is capable of isomerizing retinal from all-trans to the 11-cis form in the light, and confirmed that the vesicles in fact contained retinochrome in addition to rhodopsin. This is the first time that retinochrome has been detected in any place other than ocular tissues. The optical and chemical nature of these photopigments is the same as that we have observed in the Todarodes retina. Quantitative extractions have shown that the total yield of photopigments is approximately 0.0006 in absorbance at lambda max (light path, 10 mm) per milliliter per thread of vesicles, and that the amount of retinochrome in the vesicles is roughly equivalent to that of rhodopsin. Whereas rhodopsin is located in the rhabdomal membranes, retinochrome is probably associated with lamellated structures and their derivatives in the cytoplasm. In the parolfactory vesicles, retinochrome may also cooperate with rhodopsin in the same way as has been discussed for retinal photoreception.  相似文献   

10.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

11.
12.
Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and alpha adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.  相似文献   

13.
The Anabaena sensory rhodopsin transducer (ASRT) is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies.  相似文献   

14.
Summary We have cloned and characterized members of a gene family encoding polypeptide constituents of the fucoxanthin, chlorophyll a/c protein complex, a light-harvesting complex associated with photosystem II of diatoms and brown algae. Three cDNA clones encoding proteins associated with this complex in the diatom Phaeodactylum tricornutum have been isolated. As deduced from the nucleotide sequences, these light-harvesting proteins show homology to the chlorophyll a/b binding polypeptides of higher plants. Specifically, the N-terminal regions of the fucoxanthin, chlorophyll a/c-binding proteins are homologous to the chlorophyll a/b binding proteins in both the third membrane-spanning domain and the stroma-exposed region between membrane-spanning domains 2 and 3. Like the chlorophyll a/b-binding proteins, the mature fucoxanthin, chlorophyll a/c polypeptides have three hydrophobic -helical domains which could span the membrane bilayer. The similarities between the two light-harvesting proteins might reflect the fact that both bind chlorophyll molecules and/or might be important for maintaining certain structural features of the complex. There is little similarity between the N-terminal sequences of the primary translation products of the fucoxanthin, chlorophyll a/c proteins and any transit sequences that have been characterized. Instead, the N-terminal sequences have features resembling those of signal sequences. Thus either transit peptides used in P. tricornutum show little resemblance to those of higher plants and green algae or the nuclear-encoded plastid proteins enter the organelle via a mechanism different from that used in higher plants.  相似文献   

15.
Summary Photoperiodic testicular growth in House Sparrows (Passer domesticus) exposed to long days (16 hrs) of orange-red light ({ie205-01}600 nm) is exclusively controlled by extraretinal photoreceptors in the brain; the eyes are not involved. Careful reconsideration of previously published data from this and other bird species does not support a role for the eyes in photoperiodically significant photoreception.  相似文献   

16.
Tomato contains homologues of Arabidopsis cryptochromes 1 and 2   总被引:4,自引:0,他引:4  
Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cry1 and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific.  相似文献   

17.
18.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

19.
In developing Drosophila photoreceptors, rhodopsin is trafficked to the rhabdomere, a specialized domain within the apical membrane surface. Rab11, a small GTPase implicated in membrane traffic, immunolocalizes to the trans-Golgi network, cytoplasmic vesicles and tubules, and the base of rhabdomeres. One hour after release from the endoplasmic reticulum, rhodopsin colocalizes with Rab11 in vesicles at the base of the rhabdomere. When Rab11 activity is reduced by three different genetic procedures, rhabdomere morphogenesis is inhibited and rhodopsin-bearing vesicles proliferate within the cytosol. Rab11 activity is also essential for development of MVB endosomal compartments; this is probably a secondary consequence of impaired rhabdomere development. Furthermore, Rab11 is required for transport of TRP, another rhabdomeric protein, and for development of specialized membrane structures within Garland cells. These results establish a role for Rab11 in the post-Golgi transport of rhodopsin and of other proteins to the rhabdomeric membranes of photoreceptors, and in analogous transport processes in other cells.  相似文献   

20.
Electrophysiological study of Drosophila rhodopsin mutants   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号