首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the human nuclear receptor, DAX1, cause X-linked adrenal hypoplasia congenita (AHC). We report the isolation and characterization of a DAX1 homolog, dax1, in zebrafish. The dax1 cDNA encodes a protein of 264 amino acids, including the conserved carboxy-terminal ligand binding-like motif; but the amino-terminal region lacks the unusual repeats of the DNA binding-like domain in mammals. Genomic sequence analysis indicates that the dax1 gene structure is conserved also. Whole-mount in situ hybridization revealed the onset of dax1 expression in the developing hypothalamus at approximately 26 h post fertilization (hpf). Later, at about 28 hpf, a novel expression domain for dax1 appeared in the trunk. This bilateral dax1-expressing structure was located immediately above the yolk sac, between the otic vesicle and the pronephros. Interestingly, weak and transient expression of dax1 was observed in the interrenal glands (adrenal cortical equivalents) at approximately 31 hpf. This gene was also expressed in the liver after 3 dpf in the zebrafish larvae. Disruption of dax1 function by morpholino oligonucleotides (MO) down-regulated expression of steroidogenic genes, cyp11a and star, and led to severe phenotypes similar to ff1b (SF1) MO-injected embryos. Injection of dax1 MO did not affect ff1b expression, whereas ff1b MO abolished dax1 expression in the interrenal organ. Based on these results, we propose that dax1 is the mammalian DAX1 ortholog, functions downstream of ff1b in the regulatory cascades, and is required for normal development and function of the zebrafish interrenal organ.  相似文献   

2.
Steroids are synthesized mainly from the adrenal cortex. Adrenal deficiencies are often associated with problems related to its development, which is not fully understood. To better understand adrenocortical development, we studied zebrafish because of the ease of embryo manipulation. The adrenocortical equivalent in zebrafish is called the interrenal, because it is embedded in the kidney. We find that interrenal development parallels that of the embryonic kidney (pronephros). Primordial interrenal cells first appear as bilateral intermediate mesoderm expressing ff1b in a region ventral to the third somite. These cells then migrate toward the axial midline and fuse together. The pronephric primordia are wt1-expressing cells located next to the interrenal. They also migrate to the axial midline and fuse to become glomeruli at later developmental stages. Our gene knockdown experiments indicate that wt1 is required for its initial restricted expression in pronephric primordia, pronephric cell migration and fusion. wt1 also appears to be involved in interrenal development and ff1b expression. Similarly, ff1b is required for interrenal differentiation and activation of the differentiated gene, cyp11a1. Our results show that the zebrafish interrenal and pronephros are situated close together and go through parallel developmental processes but are governed by different signaling events.  相似文献   

3.
4.
The adrenal cortex has a complex vasculature that is essential for growth, tissue maintenance, and access of secreted steroids to the bloodstream. However, the interaction between vasculature and adrenal cortex during early organogenesis remains largely unclear. In this study, we focused on the zebrafish counterpart of adrenal cortex, interrenal tissue, to explore the possible role of endothelium in the development of steroidogenic tissues. The ontogeny of interrenal tissue was found to be tightly associated with the endothelial cells (ECs) that constitute the axial vessels. The early interrenal primordia emerge as two clusters of cells that migrate centrally and converge at the midline, whereas the central convergence was abrogated in the avascular cloche (clo) mutant. Neither loss of blood circulation nor perturbations of vessel assembly could account for the interrenal convergence defect, implying a role of endothelial signaling prior to the formation of axial blood vessels. Moreover, as the absence of trunk endothelium in clo mutant was rescued by the forced expression of SCL, the interrenal fusion defect could be alleviated. We thus conclude that endothelial signaling is involved in the morphogenetic movement of early interrenal tissue.  相似文献   

5.
Retinoic acid (RA) signaling in vertebrate embryos occurs in a distinct physical and temporal pattern. Regulating this spatial distribution is crucial to the development of the embryo, as RA in excess or in inappropriate tissues is teratogenic. In order to understand how RA availability is determined in zebrafish we have investigated the expression of cyp26a1, an enzyme that inactivates RA, and its relationship to raldh2, one of the enzymes that produce RA from retinal. cyp26a1 expression follows three phases: in presumptive anterior neurectoderm and in a circumblastoporal ring during gastrulation, in the tailbud throughout somitogenesis, and in multiple specific tissue types beginning at mid-somitogenesis and continuing through 48 h postfertilization (hpf). This expression was either adjacent or opposite to those tissues expressing raldh2. We then investigated how RA production might regulate these relationships. Endogenous RA produced by raldhs did not play a role in setting cyp26a1 expression in most tissues. However, exogenous RA regulates expression of both enzymes. cyp26a1 is up regulated in the embryo in a time, concentration, and tissue-dependent manner. Conversely, raldh2 expression is reduced with RA treatment. Tests of the raldh2 promoter in cell transfections proved that RA directly represses its activity. These data demonstrate that the feedback mechanisms regulating production and degradation of RA must be considered in any experiments altering levels of RA in the developing vertebrate embryo.  相似文献   

6.
7.
The differentiation of endothelial cells is tightly connected with the formation of blood vessels during vertebrate development. The signaling pathways mediated by vascular endothelial growth factor (vegf) are required for these processes. Here we show that a proto-oncogene, meis1, plays important roles in the vascular development in zebrafish. Knockdown of meis1 by anti-sense meis1 morpholino (meis1 MO) led to the impairment of intersegmental vessel (ISV) formation. In meis1 morphants, the expression of an artery marker was reduced in dorsal aorta (DA), and the expression of vein markers was expanded in DA and posterior cardinal vein (PCV), suggesting the defects on artery development. Furthermore, the expression of vegf receptor, flk1, was significantly decreased in these embryos. Interestingly, flk1 MO-injected embryos exhibited similar defects as meis1 morphants. Thus, these results implicate that meis1 is a novel regulator involved in endothelial cell development, presumably affecting the vegf signaling pathway.  相似文献   

8.
9.
To gain insight into the mechanisms of Lmx1b function during ocular morphogenesis, we have studied the roles of lmx1b.1 and lmx1b.2 during zebrafish eye development. In situ hybridization and characterization of transgenic lines in which GFP is expressed under lmx1b.1 regulatory sequence show that these genes are expressed in periocular tissues and in a pattern conserved with other vertebrates. Anti-sense morpholinos against lmx1b.1 and lmx1b.2 result in defective migration of periocular mesenchymal cells around the eye and lead to apoptosis of these cells. These defects in the periocular mesenchyme are correlated with a failure in fusion of the choroid fissure or in some instances, more severe ventral optic cup morphogenesis phenotypes. Indeed, by blocking the death of the periocular mesenchyme in Lmx1b morphants, optic vesicle morphogenesis is largely restored. Within the retina of lmx1b morphants, Fgf activity is transiently up-regulated and these morphants show defective naso-temporal patterning. Epistasis experiments indicate that the increase in Fgf activity is partially responsible for the ocular anomalies caused by loss of Lmx1b function. Overall, we propose zebrafish lmx1b.1 and lmx1b.2 promote the survival of periocular mesenchymal cells that influence multiple signaling events required for proper ocular development.  相似文献   

10.
11.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   

12.
CH Chiu  CW Chou  S Takada  YW Liu 《PloS one》2012,7(8):e43040

Background

The early morphogenetic steps of zebrafish interrenal tissue, the teleostean counterpart of the mammalian adrenal gland, are modulated by the peri-interrenal angioblasts and blood vessels. While an organized distribution of intra-adrenal vessels and extracellular matrix is essential for the fetal adrenal cortex remodeling, whether and how an intra-interrenal buildup of vasculature and extracellular matrix forms and functions during interrenal organogenesis in teleosts remains unclear.

Methodology and Principal Findings

We characterized the process of interrenal gland vascularization by identifying the interrenal vessel (IRV); which develops from the axial artery through angiogenesis and is associated with highly enriched Fibronectin (Fn) accumulation at its microenvironment. The loss of Fn1 by either antisense morpholino (MO) knockdown or genetic mutation inhibited endothelial invasion and migration of the steroidogenic tissue. The accumulation of peri-IRV Fn requires Integrin α5 (Itga5), with its knockdown leading to interrenal and IRV morphologies phenocopying those in the fn1 morphant and mutant. fn1b, another known fn gene in zebrafish, is however not involved in the IRV formation. The distribution pattern of peri-IRV Fn could be modulated by the blood flow, while a lack of which altered angiogenic direction of the IRV as well as its ability to integrate with the steroidogenic tissue. The administration of Fn antagonist through microangiography exerted reducing effects on both interrenal vessel angiogenesis and steroidogenic cell migration.

Conclusions and Significance

This work is the first to identify the zebrafish IRV and to characterize how its integration into the developing interrenal gland requires the Fn-enriched microenvironment, which leads to the possibility of using the IRV formation as a platform for exploring organ-specific angiogenesis. In the context of other developmental endocrinology studies, our results indicate a highly dynamic interrenal-vessel interaction immediately before the onset of stress response in the zebrafish embryo.  相似文献   

13.
14.
15.
Fushi-tarazu factor 1a (Ftz-F1a, Ff1a, Nr5a2) is a nuclear receptor with diverse functions in many tissues. Here, we report the function of ff1a in zebrafish muscle differentiation. In situ hybridization revealed that ff1a mRNA was present in the adaxial and migrating slow muscle precursors and was down-regulated when slow muscle cells matured. This expression was under the control of hedgehog genes, expanded when hedgehog was increased and missing in mutants defective in genes in the Hedgehog pathway like you-too (yot), sonic you (syu), and u-boot (ubo). Blocking ff1a activity by injecting a deleted form of ff1a or an antisense ff1a morpholino oligo into fish embryos caused thinner and disorganized fibers of both slow and fast properties. Transient expression of ff1a in syu, ubo, and yot embryos led to more fibril bundles, even when slow myoblasts were transfated into fast properties. We showed that ff1a and prox1 complemented each other in slow myofibril assembly, but they did not affect the expression of each other. These results demonstrate that ff1a functions in both slow and fast muscle morphogenesis in response to Hedgehog signaling, and this function parallels the activity of another slow muscle gene, prox1.  相似文献   

16.
Proper restriction of retinoid signaling by Cyp26s is essential for development of vertebrate embryos while inappropriate retinoid signaling can cause teratogenesis. Here, we report cloning and expression analysis of a novel cyp26 gene (cyp26d1) isolated from zebrafish. The predicted protein encoded by cyp26d1 consists of 554 amino acids. It exhibits 54% amino acid identity with human Cyp26C1, 50% with zebrafish Cyp26B1 and 38% with zebrafish Cyp26A1. Whole-mount in situ hybridization shows that cyp26d1 is first expressed in sphere stage, then disappears at 50% epiboly and resumes its expression at 75% epiboly. During segmentation period, cyp26d1 message is found at presumptive hindbrain. Double in situ hybridization with krox20 and cyp26d1 reveals that cyp26d1 is expressed in presumptive rhombomere 2-4 (r2-r4) at 2-somite stage. At 3-somite stage, cyp26d1 gene is expressed in r6 and pharyngeal arch (pa) one in addition to its expression at r2 and r4. At 6-somite stage, cyp26d1 message is present in continuous bands at r2-r6 and in pa1. This expression pattern is maintained from 10-somite stage through 21-somite stage except that the expression level is greatly reduced at r2 and r4. At 21-somite stage, cyp26d1 is also found in a group of cells in telencephalon and diencephalons. At 25-31h post-fertilization (hpf), the zebrafish cyp26d1 expression domain is extended to eyes, otic vesicles and midbrain in addition to its expression in hindbrain, telencephalon, diencephalons, and pharyngeal arches. At 35-48hpf, the expression of cyp26d1 is mainly restricted to otic vesicles, pharyngeal arches and pectoral fins and the expression level is greatly reduced.  相似文献   

17.
18.
19.
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass, notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tal1 and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tal1, lmo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development.  相似文献   

20.

Background

While the endothelium-organ interaction is critical for regulating cellular behaviors during development and disease, the role of blood flow in these processes is only partially understood. The dorsal aorta performs paracrine functions for the timely migration and differentiation of the sympatho-adrenal system. However, it is unclear how the adrenal cortex and medulla achieve and maintain specific integration and whether hemodynamic forces play a role.

Methodology and Principal Findings

In this study, the possible modulation of steroidogenic and chromaffin cell integration by blood flow was investigated in the teleostean counterpart of the adrenal gland, the interrenal gland, in the zebrafish (Danio rerio). Steroidogenic tissue migration and angiogenesis were suppressed by genetic or pharmacologic inhibition of blood flow, and enhanced by acceleration of blood flow upon norepinephrine treatment. Repressed steroidogenic tissue migration and angiogenesis due to flow deficiency were recoverable following restoration of flow. The regulation of interrenal morphogenesis by blood flow was found to be mediated through the vascular microenvironment and the Fibronectin-phosphorylated Focal Adhesion Kinase (Fn-pFak) signaling. Moreover, the knockdown of krüppel-like factor 2a (klf2a) or matrix metalloproteinase 2 (mmp2), two genes regulated by the hemodynamic force, phenocopied the defects in migration, angiogenesis, the vascular microenvironment, and pFak signaling of the steroidogenic tissue observed in flow-deficient embryos, indicating a direct requirement of mechanotransduction in these processes. Interestingly, epithelial-type steroidogenic cells assumed a mesenchymal-like character and downregulated β-Catenin at cell-cell junctions during interaction with chromaffin cells, which was reversed by inhibiting blood flow or Fn-pFak signaling. Blood flow obstruction also affected the migration of chromaffin cells, but not through mechanosensitive or Fn-pFak dependent mechanisms.

Conclusions and Significance

These results demonstrate that hemodynamically regulated Fn-pFak signaling promotes the migration of steroidogenic cells, ensuring their interaction with chromaffin cells along both sides of the midline during interrenal gland development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号