首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang P  Visiers I  Weinstein H  Liu-Chen LY 《Biochemistry》2002,41(40):11972-11980
Activation of rhodopsin and monoamine G protein-coupled receptors (GPCRs) has been proposed to involve in part the disruption of a conserved E6.30-R3.50 ionic interaction between transmembrane segments (TMs) 3 and 6. However, this interaction does not occur in the opioid receptors, which have L275 at 6.30. On the basis of our findings that mutations of T6.34(279) to K and D produced, respectively, a constitutively active and an inactive form of the mu opioid receptor, we previously suggested that the functional role of the 6.30(275) residue could be assumed by T6.34(279), but the interplay between residues at positions 6.30 and 6.34 remained unresolved. In this study, we examined the effects of introducing an E in position 6.30(275) of the wild type (WT) and of the T6.34(279) mutants of the mu opioid receptor to compare the participation of the 6.30 locus in molecular events during activation in this receptor with its role in other GPCRs. The L6.30(275)E and the L6.30(275)E/T6.34(279)D mutants displayed no constitutive activity and could not be activated by the agonist DAMGO or morphine. The L6.30(275)E/T6.34(279)K mutant had some constitutive activity, but much less than the T6.34(279)K mutant, and could be activated by both agonists. The rank order of affinity for the agonist DAMGO is as follows: T6.34(279)K > WT congruent with L6.30(275)E/T6.34(279)K > L6.30(275)E congruent with T6.34(279)D > L6.30(275)E/T6.34(279)D; however, all constructs have a similar affinity for the antagonist [(3)H]diprenorphine. These data are interpreted in the context of interactions with the conserved R3.50(165) in TM3. When L6.30(275) is mutated to E, the favorable E6.30(275)-R3.50(165) interaction stabilizes an inactive state, as in rhodopsin, and hence reduces the activities of T6.34(279) mutants. Thus, the mu opioid receptor is shown to be different from rhodopsin and monoamine GPCRs, of which the WTs with native E6.30 can be activated, and the 6.34D or 6.34K mutants display enhanced constitutive activities. Our molecular modeling results suggest that some specific differences in local geometry at the cytoplasmic ends of TM5 and TM6 may account in part for the observed differences in the molecular mechanisms of receptor activation.  相似文献   

2.
Maher CE  Martin TJ  Childers SR 《Life sciences》2005,77(10):1140-1154
Previous studies have shown that chronic opiate treatment decreases mu opioid-stimulated [35S]GTPgammaS binding in specific brain regions. To extend these findings, the present study investigated DAMGO-stimulated [35S]GTPgammaS binding in membrane homogenates and coronal sections from rats non-contingently administered heroin. Rats were administered saline or increasing doses of heroin i.v. hourly up to 288 mg/kg/day over 40 days. In brain sections, chronic heroin administration decreased DAMGO-stimulated [35S]GTPgammaS binding in medial thalamus and amygdala, with no effect in cingulate cortex or nucleus accumbens. Chronic heroin administration also reduced [35S]GTPgammaS binding stimulated by the principal metabolite of heroin, 6-monoacetylmorphine. In contrast, no significant changes in mu opioid receptor binding were observed in amygdala or thalamus using [3H]DAMGO autoradiography. In membranes from amygdala and thalamus, chronic heroin treatment decreased the maximal effect of DAMGO in stimulating [35S]GTPgammaS binding, with no effect on DAMGO potency. GTPgammaS saturation analysis showed that chronic heroin treatment decreased the Bmax, and increased the K(D), of DAMGO-stimulated [35S]GTPgammaS binding. These data suggest potential mechanisms by which chronic agonist treatment produces opioid receptor/G-protein desensitization in brain.  相似文献   

3.
Xu W  Sanz A  Pardo L  Liu-Chen LY 《Biochemistry》2008,47(40):10576-10586
We previously demonstrated that D3.49(164)Y or T6.34(279)K mutation in the rat mu opioid receptor (MOPR) resulted in agonist-independent activation. Here, we identified the cysteine(s) within the transmembrane domains (TMs) of the D3.49(164)Y mutant that became accessible in the binding-site crevice by use of methanethiosulfonate ethylammonium (MTSEA) and inferred conformational changes associated with receptor activation. While the C7.38(321)S mutant was insensitive to MTSEA, the D3.49(164)Y/C7.38(321)S mutant showed similar sensitivity as the D3.49(164)Y, suggesting that, in the D3.49(164)Y mutant, C7.38(321) becomes inaccessible while other cysteines are accessible in the binding-site crevice. Each of the other seven cysteines in the TMs was mutated to serine on the background of D3.49(164)Y/C7.38(321)S, and the resulting triple mutants were evaluated for [3H]diprenorphine and [d-Ala2,NMe-Phe4,Gly5-ol]-enkephalin (DAMGO) binding and effect of MTSEA on [3H]diprenorphine binding. The D3.49(164)Y/C7.38(321)S mutant and the triple mutants, except the C6.47(292)S triple mutant, retained similar affinities for [3H]diprenorphine and DAMGO as the D3.49(164)Y mutant. The second-order rate constants for MTSEA reactions showed that C3.44(159)S, C4.48(190)S, C5.41(235)S, and C7.47(330)S significantly reduced sensitivity to MTSEA, compared with the D3.49(164)Y/C7.38(321)S. These results suggest that the four cysteines may be rotated and/or tilted to become accessible. While the D3.49(164)Y/C7.38(321)S was similarly sensitive to MTSEA as the D3.49(164)Y mutant, the T6.34(279)K/C7.38(321)S was much less sensitive to MTSEA than the T6.34(279)K mutant, suggesting that the two constitutively active mutants assume different conformations and/or possess different dynamic properties. Molecular models of the MOPR monomer and homodimer, using the crystal structures of rhodopsin, the beta2-adrenergic receptor, and the ligand-free opsin, which contains several features characteristic of the active state, were employed to analyze these experimental results in a structural context.  相似文献   

4.
Li J  Huang P  Chen C  de Riel JK  Weinstein H  Liu-Chen LY 《Biochemistry》2001,40(40):12039-12050
The roles of conserved aspartates in the third transmembrane domain of the rat mu opioid receptor (RMOR) were explored with mutations of D3.32(147) and D3.49(164). D3.49(164) in the highly conserved DRY motif was mutated to 13 amino acids. Except for the D3.49(164)E mutant, each mutant displayed little or no detectable [(3)H]diprenorphine binding, and pretreatment with naloxone greatly enhanced binding. D3.49(164)H, -Q, -Y, -M, and -E mutants were further studied. D3.32(147) was substituted with A or N. All seven mutants exhibited similar binding affinities for the antagonist [(3)H]diprenorphine as the wild-type. The D3.49(164)H, -Q, -Y, and -M mutants, but not the D3.49(164)E and D3.32(147) mutants, exhibited enhanced basal [(35)S]GTPgammaS binding which was comparable to the maximally activated level of the wild-type and was related to expression levels. Naloxone, naltrexone, and naloxone methiodide significantly inhibited the basal [(35)S]GTPgammaS binding of the D3.49(164) mutants, indicating inverse agonist activities. Treatment of the D3.49(164)Y mutant with pertussis toxin greatly reduced the basal [(35)S]GTPgammaS binding, demonstrating constitutive activation of Galpha(i)/Galpha(o). The D3.49(164)H, -Y, -M, and -Q mutants had higher affinities for DAMGO than the wild-type, which were not significantly lowered by GTPgammaS. Thus, mutation of D3.49(164) to H, Y, M, or Q in RMOR resulted in receptor assuming activated conformations. In contrast, the D3.49(164)E mutant displayed significantly lower basal [(35)S]GTPgammaS binding and reduced affinity for DAMGO. Upon incubation of membranes at 37 degrees C, the constitutively active D3.49(164)Y mutant was structurally less stable, whereas the inactivated D3.49(164)E mutant was more stable, than the wild-type. Computational simulations showed that the E3.49 side chain interacted strongly with the conserved R3.50 in the DRY motif and stabilized the inactive form of the receptor. Taken together, these results indicate that D3.49 plays an important role in constraining the receptor in inactive conformations.  相似文献   

5.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

6.
We examined whether a proposed spatial proximity between Asp114(2.50) and Asn332(7.49) affected the functional properties of the mu opioid receptor. The D114(2.50)N mutant had reduced binding affinities for morphine, DAMGO and CTAP, but not for naloxone and [3H]diprenorphine; this mutation also abolished agonist-induced increase in [35S]GTPgammaS binding. The N332(7.49)D mutation eliminated detectable binding of either [3H]diprenorphine or [3H]DAMGO. The combined D114(2.50)N-N332(7.49)D mutation restored high affinity binding for [3H]diprenorphine, CTAP and naloxone, and restored partially the binding affinities, potencies and efficacies of morphine and DAMGO. Thus, reciprocal mutations of Asp114(2.50) and Asn332(7.49) compensate for the detrimental effects of the single mutations, indicating that the residues are adjacent in space and that their chemical functionalities are important for ligand binding and receptor activation.  相似文献   

7.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

8.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

9.
The ability of selective mu- ([D-Ala2, NHPhe4, Gly-ol]enkephalin: DAMGO), delta1- ([D-Pen2, Pen5]enkephalin: DPDPE) and delta2- ([D-Ala2]deltorphin II: DELT II) opioid receptor agonists to activate G-proteins in the midbrain and forebrain of mice and rats was examined by monitoring the binding of guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The levels of [35S]GTPgammaS binding stimulated by DAMGO in the mouse and rat midbrain were significantly greater than those by DPDPE or DELT II. However, relatively lower levels of stimulation of [35S]GTPgammaS binding by all of the agonists than would have been predicted from the receptor densities were observed in either the limbic forebrain or striatum of mice and rats. The effects of DAMGO, DPDPE and DELT II in all three regions were completely reversed by selective mu-, delta1- and delta2-antagonists, respectively. The results indicate that the levels of mu-, delta1- and delta2-opioid receptor agonist-induced G-protein activation in the midbrain are in good agreement with the previously determined distribution densities of each receptor type. Furthermore, the discrepancies observed in the forebrain might reflect differential catalytic efficiencies of receptor-G-protein coupling.  相似文献   

10.
AR-M100613 ([I]-Dmt-c[-D-Orn-2-Nal-D-Pro-D-Ala-]) is the iodinated analog of a cyclic casomorphin previously shown to be a potent antagonist at the delta opioid receptor. Specific [125I]AR-M100613 binding to rat whole brain membranes was saturable, reversible, and best fit to a one-site model (Kd = 0.080 +/- 0.008 nM, Bmax = 45.2 +/- 4.4 fmol/mg protein). [125I]AR-M100613 binding was displaced with high affinity by the delta opioid receptor ligands SNC-80, Deltorphin II and DPDPE but not the mu or kappa-selective receptor ligands DAMGO and U69593. Residual non-selective binding of [125I]AR-M 100613 to mu opioid receptors is blocked by the addition of CTOP to the assay buffer. [35S]GTPgammaS binding assays indicate that AR-M100613 is a potent, selective, and reversible antagonist for delta opioid receptors in rat brain membranes. The high-affinity, high specific activity, low nonspecific binding and antagonist profile of [125I]AR-M100613 favor its use as a radiochemical probe for delta opioid receptors.  相似文献   

11.
Intrinsic activities of different delta opioid agonists were determined in a [35S]GTPgammaS binding assay using cell membranes from Chinese hamster ovary (CHO) cells stably expressing the wild type (hDOR/CHO) or W284L mutant human delta opioid receptor (W284L/CHO). Agonist binding affinities were regulated more robustly by sodium and guanine nucleotide in W284L/CHO than in hDOR/ CHO cell membranes. The W284L mutation selectively reduced the affinity of SNC 80 while having moderate effect ((-) TAN 67) or no effect (DPDPE) on the affinities of other delta selective agonists. The mutation had opposite effects on the intrinsic activities of agonists belonging to different chemical classes. The effects of the mutation on agonist affinities and potencies were independent from its effects on the intrinsic activities of the agonists. Maximal stimulation of [35S]GTPgammaS binding by SNC 80 was 2-fold higher in W284L mutant cell membranes than in wild type hDOR/CHO cell membranes, despite lower receptor expression levels in the W284L/CHO cells. The binding affinity of SNC 80 however, was significantly reduced (15-fold and 30-fold in the absence or presence of sodium+GDP respectively) in W284L/CHO cell membranes relative to wild type hDOR/CHO membranes. Conversely, the Emax of (-)TAN 67 in the [35S]GTPgammaS binding assay was markedly reduced (0.6-fold of that of the wild type) with only a slight (6-fold) reduction in its binding affinity. The affinity and intrinsic activity of DPDPE on the other hand remained unchanged at the W284L mutant hDOR. The mutation had similar effects on the affinities potencies and intrinsic activities of (-)TAN 67 and SB 219825. The results indicate that delta opioid agonists of different chemical classes use specific conformations for G protein activation.  相似文献   

12.
We have investigated whether transmembrane amino acid residues Asp128 (domain III), Tyr129 (domain III) [corrected], and Tyr308 (domain VII) in the mouse delta opioid receptor play a role in receptor activation. To do so, we have used a [35S]GTPgammaS (where GTPgammaS is guanosine 5'-3-O-(thio)triphosphate) binding assay to quantify the activation of recombinant receptors transiently expressed in COS cells and compared functional responses of D128N, D128A, Y129F, Y129A, and Y308F point-mutated receptors to that of the wild-type receptor. In the absence of ligand, [35S]GTPgammaS binding was increased for every mutant receptor under study (1.6-2.6-fold), suggesting that all mutations are able to enhance constitutive activity at the receptor. In support of this finding, the inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu (where Aib represents alpha-aminobutyric acid) efficiently reduced basal [35S]GTPgammaS binding in the mutated receptor preparations. The potent agonist BW373U86 stimulated [35S]GTPgammaS binding above basal levels with similar (D128N, Y129F, and Y129A) or markedly increased (Y308F) efficacy compared with wild-type receptor. BW373U86 potency was maintained or increased. In conclusion, our results demonstrate that the mutations under study increase functional activity of the receptor. Three-dimensional modeling suggests that Asp128 (III) and Tyr308 (VII) interact with each other and that Tyr129 (III) undergoes H bonding with His278 (VI). Thus, Asp128, Tyr129, and Tyr308 may be involved in a network of interhelical bonds, which contributes to maintain the delta receptor under an inactive conformation. We suggest that the mutations weaken helix-helix interactions and generate a receptor state that favors the active conformation and/or interacts with heterotrimeric G proteins more effectively.  相似文献   

13.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

14.
The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of mu-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated mu-opioid peptide endomorphins can activate G proteins through mu-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS). An autoradiographic [(35)S]GTPgammaS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 microM increased [(35)S]GTPgammaS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6+/-3.8 and 72.3+/-4.0%, respectively, at 10 microM. In contrast, the synthetic selective mu-opioid receptor agonist [D-Ala(2),NHPhe(4), Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6+/-5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [(35)S]GTPgammaS binding was verified by coincubating membranes with endomorphins in the presence of specific mu-, delta- or kappa-opioid receptor antagonists. Coincubation with selective mu-opioid receptor antagonists beta-funaltrexamine or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) blocked both endomorphin-1 and-2-stimulated [(35)S]GTPgammaS binding. In contrast, neither delta- nor kappa-opioid receptor antagonist had any effect on the [(35)S]GTPgammaS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [(35)S]GTPgammaS binding by selectively stimulating mu-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for mu-opioid receptors in the mouse PAG.  相似文献   

15.
Much evidence supports the hypothesis that A2A adenosine receptors play an important role in the expression of morphine withdrawal and that the dopaminergic system might also be involved. We have evaluated morphine withdrawal signs in wild-type and A2A receptor knockout mice and shown a significant enhancement in some withdrawal signs in the knockout mice. In addition, micro -opioid and dopamine D2 receptor autoradiography, as well as micro -opioid receptor-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate ([35S]GTPgammaS) autoradiography was carried out in brain sections of withdrawn wild-type and knockout mice. No significant changes in D2 and micro -opioid receptor binding were observed in any of the brain regions analysed. However, a significant increase in the level of micro receptor-stimulated [35S]GTPgammaS binding was observed in the nucleus accumbens of withdrawn knockout mice. These data indicate that the A2A receptor plays a role in opioid withdrawal related to functional receptor activation.  相似文献   

16.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

17.
As preferential coupling of opioid receptor to various inhibitory Galpha subunits is still under debate, we have investigated the selectivity of the human mu opioid receptor fused to a pertussis toxin insensitive C351I Gi1 alpha or C352I Gi2 alpha in stably transfected HEK 293 cells. Overall agonist binding affinities were increased for both fusion constructs when compared to the wild type receptor. [35 S]GTPgammaS binding was performed on pertussis toxin treated cells to monitor coupling efficiency of the fusion constructs. Upon agonist addition hMOR-C351I Gi1 a exhibited an activation profile similar to the non-fused receptor while hMOR-C352I Gi2 alpha was poorly activated. Interestingly no correlation could be drawn between agonist binding affinity and efficacy. Upon agonist addition, forskolin-stimulated cAMP production, as measured using a reporter gene assay, was inhibited by signals transduced via the fused Gi1 alpha and Gi2 alpha mainly. In contrast both fusion constructs were able to initiate ERK-MAPK phosphorylation via coupling to endogenous G proteins only. In conclusion our data indicate that hMOR couples more efficiently to Gi1 alpha than Gi2 alpha and that the coupling efficacy is clearly agonist-dependent.  相似文献   

18.
The ability of several mu-selective opioid peptides to activate G-proteins was measured in rat thalamus membrane preparations. The mu-selective ligands used in this study were three structurally related peptides, endomorphin-1, endomorphin-2 and morphiceptin, and their analogs modified in position 3 or 4 by introducing 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal). The results obtained for these peptides in [(35)S]GTPgammaS binding assay were compared with those obtained for a standard mu-opioid agonist DAMGO. [d-1-Nal(3)]Morphiceptin was more potent in G-protein activation (EC(50) value of 82.5+/-4.5 nM) than DAMGO (EC(50)=105+/-9 nM). [d-2-Nal(3)]Morphiceptin, as well as endomorphin-2 analogs substituted in position 4 by either d-1-Nal or d-2-Nal failed to stimulate [(35)S]GTPgammaS binding and were shown to be potent antagonists against DAMGO. It seems that the topographical location of the aromatic ring of position 3 and 4 amino acid residues can result in a completely different mode of action, producing either agonists or antagonists.  相似文献   

19.
Two constructs encoding the human micro-opioid receptor (hMOR) fused at its C terminus to either one of two Galpha subunits, Galpha(o1) (hMOR-Galpha(o1)) and Galpha(i2) (hMOR-Galpha(i2)), were expressed in Escherichia coli at levels suitable for pharmacological studies (0.4-0.5 pmol/mg). Receptors fused to Galpha(o1) or to Galpha(i2) maintained high-affinity binding of the antagonist diprenorphine. Affinities of the micro-selective agonists morphine, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), and endomorphins as well as their potencies and intrinsic activities in stimulating guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding were assessed in the presence of added purified Gbetagamma subunits. Both fusion proteins displayed high-affinity agonist binding and agonist-stimulated [(35)S]GTPgammaS binding. In the presence of Gbetagamma dimers, the affinities of DAMGO and endomorphin-1 and -2 were higher at hMOR-Galpha(i2) than at hMOR-Galpha(o1), whereas morphine displayed similar affinities at the two chimeras. Potencies of the four agonists in stimulating [(35)S]GTPgammaS binding at hMOR-Galpha(o1) were similar, whereas at hMOR-Galpha(i2), endomorphin-1 and morphine were more potent than DAMGO and endomorphin-2. The intrinsic activities of the four agonists at the two fusion constructs were similar. The results confirm hMOR coupling to Galpha(o1) and Galpha(i2) and support the hypothesis of the existence of multiple receptor conformational states, depending on the nature of the G protein to which it is coupled.  相似文献   

20.
The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号