首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The root growth rate in barley (Hordeum vulgare L.) seedlings was measured in parallel with temporal changes in longitudinal (δl) and transverse (δD/D) cell-wall extensibilities and membrane hydraulic conductivity (L p) in the root extension zone. The root growth rate and biophysical parameters examined were sensitive to UV-B irradiation of shoots or roots and to excessive content of ammonium, glutamate, or nickel in the nutrient medium. The root responses to the above treatments were compared with the effects of abscisic acid, salicylate, hydrogen peroxide, diethylstilbestrol, α-naphthyl acetate, oryzalin, and ionomycin. The progressive reduction of root growth under the action of various stressors was accompanied by typical temporal patterns of the growth zone parameters: the δl extensibility declined monotonically, while δD/D and L p changed nonmonotonically, exhibiting the reversion from the initial decrease to the eventual increase above the control values. The decline of δl indicated that the root growth suppression was mainly due to changes in cell-wall mechanical properties caused probably by disorganization of cortical microtubules. It was found that the decline in δD/D and L p was caused primarily by the appearance of oxidative stress, disorders in cytoplasmic H+ homeostasis in root cells, and the consequent transient activation of the plasmalemmal H+-pump. Conversely, the increase in δD/D and L p upon the abrupt retardation of root growth was presumably caused by the increase in cytoplasmic Ca2+ content, disassembling of cortical microtubules, and by partial inhibition of the plasmalemmal H+-pump. The reversion of δD/D and L p changes upon progressive reduction of root growth can be used as an indicator to distinguish moderate and severe stress conditions in the root growth zone. Furthermore, this reversion indicates the increasing disbalance in the homeostasis of reactive oxygen species, cytosolic Ca2+, and cytosolic H+ upon severe stress.  相似文献   

2.
UV-B irradiation of barley (Hordeum vulgare L.) roots (1 W/m2, 15 min) or leaves (3 W/m2, 3.3 h) and also one-day-long root incubation in the Knop solution supplemented with 1–4 μM ABA, 1 mM salicylic acid, 16 μM ionomycin, or 0.1 mM colchicine induced growth retardation and subapical root swelling. All factors, except for colchicine, initiated growth of root hairs on the surface of swellings and suppressed their initiation and growth in more basal root region. During the first hour after unilateral root UV-B irradiation, their growth sharply retarded and hydraulic conductivity of membranes in the rhizodermis of growth zone rose 1.5-fold. In 2.5 h, root tips bent toward the source of irradiation. In 4.5 h, the ratio of longitudinal to transverse root extensibility in the root growth zone reduced twofold. In 8 h, root diameter in the subapical zone increased and root hairs appeared in this zone and attained 300 μm in length. In a day after irradiation, on unirradiated root side, meristematic cells continued to divide and grow, although at a much lower rate. On the irradiated root side, the cells of the rhizodermis and outer cortex ceased to divide and produced vacuoles. Vacuolation did not occur in the cells of the quiescent center and a distal part of the meristem. The lower part of the elongation zone swelled due to cortical cell expansion (except for the endodermis) in both irradiated and unirradiated root sides. It is supposed that cortical microtubule randomization plays an important role in the changed anisotropy of cell wall extensibility and cytosolic calcium is involved in this process. The role of oxidative stress and hormonal shifts in the development of subapical root swelling and root hair formation caused by UV-B radiation is discussed.  相似文献   

3.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

4.
The present study was aimed at understanding the effects of long term supplemental UV-B (3.6 kJ m?2 d?1) on biomass production, accumulation of reactive oxygen species, lipid peroxidation, and enzymatic antioxidants in leaves and roots of Withania somnifera (an indigenous medicinal plant). Under the UV-B treatment, a reduction in biomass and an increased malondialdehyde content (a characteristic of lipid peroxidation) were observed in both the shoots and roots. Amongst ROS, H2O2 content increased under UV-B in the leaves, whereas it decreased in the roots, and superoxide radical production rate decreased in both the plant parts. The activities of all enzymatic antioxidants tested (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) increased under the UV-B treatment, the increase being greater in the roots.  相似文献   

5.
The present study was conducted to test the effects of KNO3, KH2PO4, and CaCl2 on shoot multiplication, root proliferation, and accumulation of phytochemicals in in vitro cultures of Oroxylum indicum. The results indicate that modifying the MS salt formulation in relation to particular inorganic nutrients highly affected shoot multiplication, root proliferation, and accumulation of flavonoids in in vitro cultures. A concentration of 0.60 g L?1 CaCl2 resulted in the highest frequency of shoot regeneration (5.6 shoots per explant). A concentration of 0.40 g L?1 CaCl2 resulted in the highest frequency of root regeneration (7.8 roots per shoot). Modifications of the concentrations of inorganic salts were also found to be advantageous for production media for both multiple shoots and shoot-derived root in vitro cultures. Multiple shoots generated on shoot induction medium with a concentration of 0.60 g L?1 CaCl2 and roots generated on root induction medium with a concentration of 1.5 g L?1 KNO3 yielded about a five times higher flavonoid level than cultures generated on control medium respectively.  相似文献   

6.
Root temperature strongly affects shoot growth, possibly via “nonhydraulic messengers” from root to shoot. In short-term studies with barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) seedlings, the optimum root temperatures for leaf expansion were 25° and 35°C, respectively. Hydraulic conductance (Lp) of both intact plants and detached exuding roots of barley increased with increasing root temperature to a high value at 25°C, remaining high with further warming. In sorghum, the Lp of intact plants and of detached roots peaked at 35°C. In both species, root temperature did not affect water potentials of the expanded leaf blade or the growing region despite marked changes in Lp. Extreme temperatures greatly decreased ion flux, particularly K+ and NO3, to the xylem of detached roots of both species. Removing external K+ did not alter short-term K+ flux to the xylem in sorghum but strongly inhibited flux at high temperature in barley, indicating differences in the sites of temperature effects. Leaf growth responses to root temperature, although apparently “uncoupled” from water transport properties, were correlated with ion fluxes. Studies of putative root messengers must take into account the possible role of ions.  相似文献   

7.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

8.
The aim of this work was to examine the response of wheat plants to a doubling of the atmospheric CO2 concentration on: (1) carbon and nitrogen partitioning in the plant; (2) carbon release by the roots; and (3) the subsequent N uptake by the plants. The experiment was performed in controlled laboratory conditions by exposing fast-growing spring wheat plants, during 28 days, to a 14CO2 concentration of 350 or 700 L L–1 at two levels of soil nitrogen fertilization. Doubling CO2 availability increased total plant production by 34% for both N treatment. In the N-fertilized soil, the CO2 enrichment resulted in an increase in dry mass production of 41% in the shoots and 23% in the roots; without N fertilization this figure was 33% and 37%, respectively. In the N-fertilized soil, the CO2 increase enhanced the total N uptake by 14% and lowered the N concentration in the shoots by 23%. The N concentration in the roots was unchanged. In the N-fertilized soil, doubling CO2 availability increased N uptake by 32% but did not change the N concentrations, in either shoots or roots. The CO2 enrichment increased total root-derived carbon by 12% with N fertilization, and by 24% without N fertilization. Between 85 and 90% of the total root derived-14C came from respiration, leaving only 10 to 15% in the soil as organic 14C. However, when total root-derived 14C was expressed as a function of root dry weight, these differences were only slightly significant. Thus, it appears that the enhanced carbon release from the living roots in response to increased atmospheric CO2, is not due to a modification of the activity of the roots, but is a result of the increased size of the root system. The increase of root dry mass also resulted in a stimulation of the soil N mineralization related to the doubling atmospheric CO2 concentration. The discussion is focused on the interactions between the carbon and nitrogen allocation, especially to the root system, and the implications for the acquisition of nutrients by plants in response to CO2 increase.Abbreviations N soil fertilization without nitrogen - N soil fertilization with nitrogen  相似文献   

9.

Background and Aims

The effects of Sb(V), alone or combined with Se, on the growth and root development of plants are unknown. The aim of this study is to investigate the interaction between selenite and different forms of Sb and the effects on their uptake in rice and on rice root morphology.

Methods

A hydroponic experiment was conducted that contained fourteen treatments. The treatment levels for Se were 0.5 and 1 mg L?1, and the treatment levels for Sb(III) and Sb(V) were 5 and 15 mg L?1.

Results

Sb(V) alone significantly reduced the surface area, mean diameter and volume of the roots, whereas Sb(III) alone reduced the values of most parameters of root morphology. The addition of 1 mg L?1 Se significantly enhanced the surface area, number of medium roots, and Sb concentration in the roots subjected to 15 mg L?1 Sb(V), but it decreased the number of root forks, the number and proportion of fine roots, and the shoot Sb concentration under exposure to 15 mg L?1 Sb(III). When the plants were subjected to 1 mg L?1 Se, the addition of 15 mg L?1 Sb(III) markedly reduced the shoot and root Se concentrations and the number of root tips, root forks, and fine roots and increased the mean root diameter. However, the addition of Sb(V) did not significantly affect the root and shoot Se concentrations but significantly decreased the number of root forks and fine roots and increased the proportion of medium roots.

Conclusions

Se and Sb(III) showed antagonistic effects on uptake in the shoots, but not in the roots, of paddy rice. A range of Se concentrations could stimulate the uptake of Sb in both the shoots and roots of paddy rice exposed to Sb(V).
  相似文献   

10.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

11.
It has been suggested that field experiments which increase UV-B irradiation by a fixed amount irrespective of ambient light conditions (‘square-wave’), may overestimate the response of photosynthesis to UV-B irradiation. In this study, pea (Pisum sativum L.) plants were grown in the field and subjected to a modulated 30% increase in ambient UK summer UV-B radiation (weighted with an erythemal action spectrum) and a mild drought treatment. UV-A and ambient UV control treatments were also studied. There were no significant effects of the UV-B treatment on the in situ CO2 assimilation rate throughout the day or on the light-saturated steady-state photosynthesis. This was confirmed by an absence of UV-B effects on the major components contributing to CO2 assimilation; photosystem II electron transport, ribulose 1,5-bisphosphate regeneration, ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, and stomatal conductance. In addition to the absence of an effect on photosynthetic activities, UV-B had no significant impact on plant biomass, leaf area or partitioning. UV-B exposure increased leaf flavonoid content. The UV-A treatment had no observable effect on photosynthesis or productivity. Mild drought resulted in reduced biomass, a change in partitioning away from shoots to roots whilst maintaining leaf area, but had no observable effect on photosynthetic competence. No UV-B and drought treatment interactions were observed on photosynthesis or plant biomass. In conclusion, a 30% increase in UV-B had no effects on photosynthetic performance or productivity in well-watered or droughted pea plants in the field.  相似文献   

12.
13.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

14.
Reductants are often used to reduce Cr(VI) in chemical treatments, yet the effects of the reductants on Cr(VI) phytoremediation are not fully understood. This study investigates the effects of different reductants on Cr(VI) phytoremediation by Ipomoea aquatica in simulated solution with 3 mg L?1 of Cr(VI), pH0 of 6, and an incubation time of 5 days. Results indicate that the applications of S2O32?, Fe0, and Fe2+ at low doses notably increased root Cr concentrations, which were obviously higher than that those in the control (Cr6+ alone). However, high reductant concentrations decreased bioaccumulation of Cr in the roots and shoots of the plant.

Statistical results indicate that Cr concentrations were significantly and negatively correlated with Fe concentrations in the roots and shoots of the plant (p < 0.05). This suggest that Fe accumulation inhibited Cr accumulation in the plant. A Cr(VI) concentration of 3 mg L?1 caused short, brown lateral roots with tip necrosis, leaf chlorosis, and noticeable shoot wilting. The leaf necrosis and shoot wilting is caused by oxidative damage of lateral roots by Cr(VI) rather than by the reactive oxygen species generated by the oxidative stress. Addition of the reductants effectively reduced these plant injuries.  相似文献   

15.
The aim of the paper was to determine the effect of water deficit (WD) and UV-B radiation acting individually and in combination on salicylic acid (SA) accumulation as well as on the activity of phenylalanine ammonia-lyase (PAL) and benzoic acid hydroxylase (BA2H) that control its biosynthetic route from phenylalanine. An additional aim was to test whether the interaction of these stresses limits the negative effect of a single stress on tissue hydration and membrane injury. Two-week-old seedlings were subjected to water deficit (WD), UV-B irradiation (UV-B) and three different combinations of WD and UV-B: (I) WD and UV-B applied at the same time, (II) UV-B applied before WD, and (III) WD applied before UV-B. Water deficit was imposed by immersing the root system in aerated nutrient solution with polyethylene glycol (PEG 6000) of water potential – 0.5 MPa. UV-B dosage was 24 kJ m−2 day−1 (0.84 W m−2) at the canopy level. UV-B and WD imposed individually and jointly, caused, in a time-dependent manner, an increase in SA content in both organs. Increased levels of SA in WD stressed plants were accompanied by an increase in the activity of PAL and BA2H. However, in plants exposed to UV-B were accompanied only by an increase in the activity of BA2H. Under WD conditions, an earlier increase of SA content was observed in roots than in leaves, which may indicate the involvement of SA in the signal transduction between roots and leaves. In plants exposed to sequential action of WD and UV-B, regardless of the order of its imposition, the effect of each single factor on SA accumulation in leaves was strengthened. WD had a greater effect on water loss and membrane injury than UV-B radiation. In plants exposed to WD after pre-treatment with UV-B radiation, a cross-tolerance mechanism was observed. Leaves of these plants did not show increased lipid peroxidation, measured in terms of malondialdehyde content, and a decrease in water content. This protective action was probably caused by the increase of the SA level in leaves of the UV-B treated plants prior to WD imposition.  相似文献   

16.
The effects of thidiazuron (TDZ) pretreatment of shoot tips on Harpagophytum procumbens shoot proliferation and successive stages of micropropagation, i.e. rooting of regenerated shoots and acclimatization of plantlets to ex vitro conditions, were described in the present study. The best response in terms of shoot proliferation (about seven shoots/explant) and shoot length (3.2 ± 0.4 cm) was obtained when explants pretreated with 25 µmol L?1 TDZ for 6 h were cultured on Schenk and Hildebrandt medium containing indole-3-acetic acid (IAA) (0.57 µmol L?1) and 6-benzylaminopurine (BAP) (8 µmol L?1). Under these conditions, a 330 % increase in shoot multiplication over TDZ non-pretreatment culture was achieved and TDZ pretreatment shoots were longer compared to those in control culture (2.6 ± 0.3 cm). The TDZ pretreatment did not affect the percentage of rooted shoots, length of roots and number of roots formed per shoot. The rooted plantlets were transplanted from in vitro to pots with soil and grown during 1 year in the greenhouse. The hardening process was difficult and time-consuming. We found that the plants developed from the TDZ pretreated culture were superior to plants from non-pretreated culture in terms of survival rate and morphological features, such as shoot length, leaf size, flowering and earlier root tuberisation. Random amplified polymorphic DNA and inter-simple sequence repeat analyses of pretreatment with TDZ plants showed genetic similarity to non-pretreatment plants. We conclude that applying the strategy of initial explant pretreatment with TDZ may be valuable for the improvement in H. procumbens in vitro propagation.  相似文献   

17.
Malus baccata is widely used as a rootstock in cold regions of the world because of its cold hardiness. In this study, a highly efficient Agrobacterium rhizogenes strain 8196 transformation system was developed using in vitro-derived stem segments of M. baccata. Approximately 37?% agro-infected explants produced hairy roots when they were incubated on Murashige and Skoog (MS) medium without plant growth regulators. A total of 95?% of hairy roots exhibited glucuronidase activity. Calli were induced from putatively-transformed hairy roots, and subsequently shoots were observed within 4?weeks of culture. The influence of 6-benzyladenine (BA), indole-3-butyric acid (IBA), thidiazuron (TDZ), and gibberellic acid 3 (GA3) on regeneration were investigated using an L9 (34) orthogonal experiment. About 73?% of shoots were regenerated when callus was incubated on MS medium along with 2.0?mg?L?1 BA, 0.5?mg?L?1 IBA, 0.3?mg?L?1 GA3, and 0.5?mg?L?1 TDZ. Moreover, hairy root regenerants showed higher rooting ability and exhibited morphological aberrations such as shortened stem, etiolated, wrinkled and clustered leaves than those of control.  相似文献   

18.
The laboratory testing of bottom sediments (BSs) from the Yenisei River containing different concentrations of technogenic radionuclides, heavy metals, and biogenic elements (N and P) based on aquatic such plants as Elodea canadensis (Canadian waterweed) and Myriophyllum spicatum (Eurasian watermilfoil) has revealed a higher sensitivity of roots to the general quality of BSs than shoots: shoot length (9%) < root length (11%) < root number (15%) in M. spicatum; shoot length (22%) < root length (42%) < root number (44%) in E. canadensis. In contrast to M. spicatum, the growth parameters of roots and shoots in E. canadensis have differed in a significant statistical manner between most BS samples. A reverse correlation has been found between the increase in shoot length and the activity of technogenic radionuclides in BSs, which is mostly significant in E. canadensis (r 2 = 0.90–0.95, p = 0.05). Since the growth of shoots and roots in E. canadensis has turned out to be more sensitive to changes in the quality of BSs than that in M. spicatum, E. canadensis can be considered more prospective for biotesting BSs.  相似文献   

19.
A protocol for in vitro propagation of cineraria (Senecio cruentus) was developed. The highest frequency of shoot proliferation was obtained from nodal explants cultured on Murashige and Skoog (MS) medium supplemented with 2.0?mg L?1 6-benzyladenine (BA) and 0.5?mg L?1 ??-naphthalene acetic acid (NAA), with a mean number of 14 shoots per explant. A high concentration of BA (4.0?mg L?1) and repeated subcultures resulted in hyperhydric shoots. Decreasing the BA concentration to 1.0?mg L?1 in the culture medium eliminated hyperhydricity. The concentration of ammonium nitrate (NH4NO3) and temperature had marked effects on somaclonal variation. Variation was observed when the cultures were maintained at 15?°C but not at 25?°C. Variants with blue-colored leaves and stems were identified; whereas, normal plants maintained their green-colored leaves and stems. The highest frequency of variation (67.5?%), with a mean number of 3.0 variant shoots per explants, was obtained on shoot proliferation medium (MS?+?2.0?mg L?1 BA and 0.5?mg L?1 NAA) devoid of NH4NO3. The best rooting (100?%), with the highest number of roots per shoot (10.8) and the greatest root length (6.8?cm) was obtained on medium supplemented with 0.1?mg L?1 NAA. In vitro-grown plantlets were successfully acclimatized in a greenhouse, and transferred to the field.  相似文献   

20.

Background and Aims

Aerenchyma provides a low-resistance O2 transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O2 dynamics in stem aerenchyma and evaluate O2 supply via stem lenticels to the roots of soybean during soil flooding.

Methods

Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O2 microelectrodes, and O2 transport to roots was evaluated using stable-isotope 18O2 as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO2 via the stem lenticels.

Key Results

The radial distribution of the O2 partial pressure (pO2) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200–300 µm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO2 in stem aerenchyma from 17·5 to 7·6 kPa at 13 mm below the water level, and from 14·7 to 6·1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO2 to increase again to 14–17 kPa at both positions within 10 min. After introducing 18O2 gas via the stem lenticels, significant 18O2 enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O2 sustained root respiration. In contrast, slight 18O2 enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO2 from submerged tissues to the atmosphere.

Conclusions

Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O2, and these connect to aerenchyma and enable O2 transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a ‘snorkel’ that enables O2 movement from air to the submerged roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号