首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O‐mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O‐mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.  相似文献   

2.
A new HPLC method was developed to separate linear from β(1–6)-branched β(1–3)-glucooligosaccharides. This methodology has permitted the isolation of the first fungal β(1–6)/β(1–3)-glucan branching transglycosidase using a cell wall autolysate of Aspergillus fumigatus (Af). The encoding gene, AfBGT2 is an ortholog of AfBGT1, another transglycosidase of A. fumigatus previously analyzed (Mouyna, I., Hartland, R. P., Fontaine, T., Diaquin, M., Simenel, C., Delepierre, M., Henrissat, B., and Latgé, J. P. (1998) Microbiology 144, 3171–3180). Both enzymes release laminaribiose from the reducing end of a β(1–3)-linked oligosaccharide and transfer the remaining chain to another molecule of the original substrate. The AfBgt1p transfer occurs at C-6 of the non-reducing end group of the acceptor, creating a kinked β(1–3;1–6) linear molecule. The AfBgt2p transfer takes place at the C-6 of an internal group of the acceptor, resulting in a β(1–3)-linked product with a β(1–6)-linked side branch. The single Afbgt2 mutant and the double Afbgt1/Afbgt2 mutant in A. fumigatus did not display any cell wall phenotype showing that these activities were not responsible for the construction of the branched β(1–3)-glucans of the cell wall.  相似文献   

3.
In yeasts truncated YAP1 homologues confer antifungal resistance. Our previous work has identified Afyap1, a YAP1 homologue, in Aspergillus fumigatus and found that it is responsible for oxidative stress in vitro. In order to decipher whether truncated Afyap1 involves in antifungal resistance mechanism and in oxidative stress adaptation in A. fumigatus, we introduce a putatively hyperactive truncated Afyap1 into wild-type A. fumigatus. We found that the resulted A. fumigatus containing truncated Afyap1 attenuated susceptibility to voriconazole and resistance to various oxidants. However, the Afyap1 deletion mutant and the strain harboring multiple copies of full-length Afyap1 had voriconazole susceptibility comparable with that of a wild-type A. fumigatus strain. Our study demonstrates that the truncated Afyap1 may involve in antifungal resistance to voriconazole in A. fumigatus and that the truncated Afyap1 sufficiently confers tolerance to oxidative stress in A. fumigatus.  相似文献   

4.

Background

Protein-O-mannosyltransferases (Pmt''s) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins.

Methodology/Principal Findings

Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis.

Conclusion/Significance

These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host.  相似文献   

5.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   

6.
The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, β-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.  相似文献   

7.
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.  相似文献   

8.
Aspergillus fumigatus is the primary pathogen causing the devastating pulmonary disease Invasive Aspergillosis in immunocompromised individuals. There is high genomic synteny between A. fumigatus and closely related rarely pathogenic Neosartorya fischeri and Aspergillus clavatus genomes. We applied activity-based protein profiling to compare unique or overexpressed activity-based probe-reactive proteins of all three fungi over time in minimal media growth and in response to human serum. We found 360 probe-reactive proteins exclusive to A. fumigatus, including known virulence associated proteins, and 13 proteins associated with stress response exclusive to A. fumigatus culture in serum. Though the fungi are highly orthologous, A. fumigatus has a significantly greater number of ABP-reactive proteins across varied biological process. Only 50% of expected orthologs of measured A. fumigatus reactive proteins were observed in N. fischeri and A. clavatus. Activity-based protein profiling identified a number of processes that were induced by human serum in A. fumigatus relative to N. fischeri and A. clavatus. These included actin organization and assembly, transport, and fatty acid, cell membrane, and cell wall synthesis. Additionally, signaling proteins regulating vegetative growth, conidiation, and cell wall integrity, required for appropriate cellular response to external stimuli, had higher activity-based probe-protein reaction over time in A. fumigatus and N. fisheri, but not in A. clavatus. Together, we show that measured proteins and physiological processes identified solely or significantly over-represented in A. fumigatus reveal a unique adaptive response to human protein not found in closely related, but rarely pathogenic aspergilli. These unique activity-based probe-protein responses to culture condition may reveal how A. fumigatus initiates pulmonary invasion leading to Invasive Aspergillosis.Invasive aspergillosis (IA)1 is a devastating infection caused by the ubiquitous saprophytic filamentous fungus Aspergillus fumigatus (Af) (1). Af is an opportunistic pathogen with no true virulence factors. Its pathogenicity is often attributed to its thermotolerance, response to oxidative stress, ability to grow in hypoxic or iron limiting environments, and its ability to use a variety of carbon and nitrogen sources as nutrients, such as proteins derived from the human host (2). A thorough understanding of biological processes or factors that facilitate pathogenic Af infection compared with other microbial infections is needed to assist treatment and diagnosis of IA.Af protein activity regulation and function, attenuated by environmental response and adaptation, is critical for opportunistic infection and development of IA (3). Activity-based protein profiling (ABPP), coupled to mass spectrometry (MS), is a powerful chemical biology approach for directly identifying a subset of proteins (4). ABPP employs activity-based probes (ABPs) to covalently label and enrich functional families of proteins, thereby reducing the complexity of a proteome, and facilitating observation of low abundance proteins (4). The approach is uniquely suited for studying the ABP-reactive proteome response to human protein by Af when compared with related, but rarely pathogenic Neosartorya fischeri (Nf) and Aspergillus clavatus (Ac).In a recent study, we used ABPP in combination with a MS-based approach to investigate ABP-protein reactivity of Af (5). We multiplexed, for simultaneous measurement, our click chemistry compatible general cysteine reactive vinyl sulfonate ester (VSE-1) and serine hydrolase specific fluorophosphonate (Fp-2) ABPs to analyze the ABP-reactive Af proteome of mycelia cultured in the presence and absence of human serum (HS) (5). Comparison of probe-labeled samples to nonprobe labeled global samples revealed that VSE-1 and Fp-2 enriched a defined subset of proteins. Hence, we identified a series of distinct responses of Af to HS.Herein, we hypothesize that Af uniquely reacts to HS when compared with rarely pathogenic Nf and Ac (69). Fedorova et al. found that the three species share a core of 7514 genes, and that only 8.5%, 13.5%, and 12.6% of the Af, Nf, and Ac genomes are organism specific (6). The high percentage of genomic overlap, which includes virulence associated genes, suggests that IA infection may be caused by protein regulation and function in response to environment (10, 11). Therefore, we have employed ABPP coupled to MS to identify ABP-reactive proteins and associated pathways in Af dramatically over- or under-represented in the other aspergilli in the presence of HS. We believe that unique and/or overexpressed functional pathways may be the true virulence “factor” of Af, by enabling adaptation to environmental stress and deployment of requisite metabolic regulation to survive and replicate in the host environment.  相似文献   

9.
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.  相似文献   

10.
α(1-3) glucan is a main component of the Aspergillus fumigatus cell wall. In spite of its importance, synthesis of this amorphous polymer has not been investigated to date. Two genes in A. fumigatus, AGS1 and AGS2, are highly homologous to the AGS genes of Schizosaccharomyces pombe, which encode putative α(1-3) glucan synthases. The predicted Ags proteins of A. fumigatus have an estimated molecular mass of 270 kDa. AGS1 and AGS2 were disrupted in A. fumigatus. Both Δags mutants have similar altered hyphal morphologies and reduced conidiation levels. Only Δags1 presented a reduction in the α(1-3) glucan content of the cell wall. These results showed that Ags1p and Ags2p were functionally different. The cellular localization of the two proteins was in agreement with their different functions: Ags1p was localized at the periphery of the cell in connection with the cell wall, whereas Ags2p was intracellularly located. An original experimental model of invasive aspergillosis based on mixed infection and quantitative PCR was developed to analyze the virulence of A. fumigatus mutant and wild-type strains. Using this model, it was shown that the cell wall and morphogenesis defects of Δags1 and Δags2 were not associated with a reduction in virulence in either mutant. This result showed that a 50% reduction in the content of the cell wall α(1-3) glucan does not play a significant role in A. fumigatus pathogenicity.  相似文献   

11.
A limited therapeutic arsenal against increasing clinical disease due to Aspergillus spp. necessitates urgent characterisation of new antifungal targets. Here we describe the discovery of novel, low micromolar chemical inhibitors of Aspergillus fumigatus family 18 plant-type chitinase A1 (AfChiA1) by high-throughput screening (HTS). Analysis of the binding mode by X-ray crystallography confirmed competitive inhibition and kinetic studies revealed two compounds with selectivity towards fungal plant-type chitinases. These inhibitors provide new chemical tools to probe the effects of chitinase inhibition on A. fumigatus growth and virulence, presenting attractive starting points for the development of further potent drug-like molecules.  相似文献   

12.
The sugar nucleotide UDP‐N‐acetylglucosamine (UDP‐GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. U DP‐N‐a cetylglucosamine p yrophosphorylase (UAP) is the final enzyme in eukaryotic UDP‐GlcNAc biosynthesis, converting UTP and N‐acetylglucosamine‐1‐phosphate (GlcNAc‐1P) to UDP‐GlcNAc. As such, this enzyme may provide an attractive target against pathogenic fungi. Here, we demonstrate that the fungal pathogen Aspergillus fumigatus possesses an active UAP (AfUAP1) that shows selectivity for GlcNAc‐1P as the phosphosugar substrate. A conditional mutant, constructed by replacing the native promoter of the A. fumigatus uap1 gene with the Aspergillus nidulans alcA promoter, revealed that uap1 is essential for cell survival and important for cell wall synthesis and morphogenesis. The crystal structure of AfUAP1 was determined and revealed exploitable differences in the active site compared with the human enzyme. Thus AfUAP1 could represent a novel antifungal target and this work will assist the future discovery of small molecule inhibitors against this enzyme.  相似文献   

13.
《Trends in microbiology》2023,31(3):222-224
The distinct risk factors to deadly infections by Aspergillus fumigatus (Af) in intensive care unit (ICU) patients are well known; however, so far, the mechanistic link between these predisposing conditions has been unknown. Sarden et al. recently unraveled a shared B1a lymphocyte–natural antibody–neutrophil defense pathway to Af, opening new perspectives in diagnostics and therapeutics.  相似文献   

14.
The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.  相似文献   

15.
UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose, which is an important cell wall component in Aspergillus fumigatus and other pathogenic microbes. A. fumigatus UGM (AfUGM) was expressed in Escherichia coli and purified to homogeneity. The enzyme was shown to function as a homotetramer by size-exclusion chromatography and to contain ∼50% of the flavin in the active reduced form. A kcat value of 72 ± 4 s−1 and a KM value of 110 ± 15 μM were determined with UDP-galactofuranose as substrate. In the oxidized state, AfUGM does not bind UDP-galactopyranose, while UDP and UDP-glucose bind with Kd values of 33 ± 9 μM and 90 ± 30 μM, respectively. Functional and structural differences between the bacterial and eukaryotic UGMs are discussed.  相似文献   

16.
Protein-O-glycosylation in yeast: protein-specific mannosyltransferases   总被引:11,自引:2,他引:9  
S.cerevisiae contains at least six genes (PMT1–6) fordolicholphosphate-D-mannose: protein-O-D-mannosyltransferases.The in vivo mannosylation of seven O-mannosylated yeast proteinshas been analyzed in a number of pmt mutants. The results clearlyindicate that the various protein O-mannosyltransferases havedifferent specificities for protein substrates. Five of theproteins tested (chitinase, a-agglutinin, Kre9p, Bar1p, Pir2p/hsp150)are mainly underglycosylated in pmt1 and pmt2 mutants, wherebyqualitative differences exist among the various proteins. Twoof the O-mannosylated proteins (Ggp1p and Kex2p) are not atall affected in pmt1 and pmt2 mutants but are clearly underglycosylatedwhen PMT4 is mutated. Although the PMT4 gene product is shownto be responsible for O-mannosylating a Ser-rich region of Ggp1pin vivo, a penta-seryl-peptide is not an in vitro substratefor this transferase. A PMT3 mutation does affect O-manno-sylationof chitinase only in the genetic background of a pmt1pmt2 doublemutation, indicating that PMT1 and PMT2 can compensate for adeleted PMT3 gene. dolichol-phosphate PMT gene family protein glycosylation S. cerevisiae  相似文献   

17.
Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.  相似文献   

18.
Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.  相似文献   

19.
In fission yeast (Schizosaccharomyces pombe) the homologue of the mammalian SUMO-1 ubiquitin-like modifier is encoded by the pmt3 gene. A two-hybrid screen using the telomere-binding protein Taz1p as bait identified Pmt3p as an interacting factor. In vitro experiments using purified components of the fission yeast Pmt3p modification system demonstrated that Taz1p could be modified directly by Pmt3p. The amino acid sequence of Taz1p contains a close match to the consensus modification site for SUMO-1, and a PEST sequence similar to those found in established SUMO-1 targets. Although previous experiments have identified an increase in telomere length as one consequence of the pmt3– genotype, we could not detect Pmt3p modification of Taz1p in protein extracts made from exponentially growing haploid cells or any effect of Pmt3p on the localization of GFP-Taz1p at discrete foci in the haploid cell nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号