首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of unfolding and refolding of porcine ribonuclease were investigated. The unfolded state of this protein was found to consist of a fast-refolding species (UF) and two slow-refolding species (UIS and UIIS). After the rapid collapse of the structure during the N (native)----UF unfolding reaction, UIS and UIIS are produced from UF by two independent slow isomerizations of the unfolded polypeptide chain, leading ultimately to a mixture of about 10% UF, 20% UIIS and 70% UIS molecules at equilibrium. This is at variance with all other ribonucleases investigated to date, which show a distribution of 20% UF, 60 to 70% UIIS and only 10 to 20% UIS. The two isomerizations of the unfolded porcine protein differ strongly in rate. The first process with tau = 250 seconds (10 degrees C) leads to an increase in the fluorescence of Tyr92 and was identified as cis in equilibrium trans isomerization of Pro93. At equilibrium, most unfolded molecules contain an incorrect trans Pro93. The second isomerization is much slower (tau = 1300 s at 10 degrees C) and leads to a predominance of the incorrect isomer as well. Like isomerization of Pro93, it is governed by an activation enthalpy of 22 kcal/mol (92 kJ/mol) and it was tentatively assigned to the Pro114-Pro115 sequence of porcine ribonuclease. Because of the wide separation in rate between the two reactions, molecules with an incorrect isomer only at Pro93 accumulate transiently after unfolding. These are the UIIS molecules. Most of them are finally converted to UIS by the 1300 second process. All molecules that have undergone this isomerization refold very slowly, i.e. the UIS molecules. The major fraction contains two incorrect isomers. A 1300 second isomerization after unfolding and a predominant very slow refolding reaction were observed only for the porcine protein. We suggest that these changes in the folding mechanism may be correlated with the presence of the Pro114-Pro115 sequence, which occurs only in porcine ribonuclease. The refolding pathway of porcine UIIS involves the rapid formation of a native-like intermediate with an incorrect trans Pro93 as was found previously for the bovine ribonuclease, where the UIIS species predominates in the unfolded state.  相似文献   

2.
Slow refolding kinetics in yeast iso-2 cytochrome c   总被引:1,自引:0,他引:1  
J J Osterhout  B T Nall 《Biochemistry》1985,24(27):7999-8005
  相似文献   

3.
Bhat R  Wedemeyer WJ  Scheraga HA 《Biochemistry》2003,42(19):5722-5728
The kinetics of cis-trans isomerization of individual X-Pro peptide groups is used to study the backbone dynamics of bovine pancreatic ribonuclease A (RNase A). We previously developed and validated a fluorescence method for monitoring the cis-trans isomerization of the Tyr92-Pro93 and Asn113-Pro114 peptide groups of RNase A under unfolding conditions [Juminaga, D., Wedemeyer, W. J., and Scheraga, H. A. (1998) Biochemistry 37, 11614-11620]. The essence of this method is to introduce a fluorescent residue (Tyr or Trp) in a position adjacent to the isomerizing proline (if one is not already present) and to eliminate the fluorescence of other such residues adjacent to prolines by mutating them to phenylalanine. Here, we extend this method to observe the cis-trans isomerization of these peptide groups under folding conditions using two site-directed mutants (Y92F and Y115F) of RNase A. Both isomerizations decelerate with increasing concentrations of GdnHCl, with nearly identical m values (1.11 and 1.19 M(-1), respectively) and extrapolated zero-GdnHCl time constants (42 and 32 s, respectively); by contrast, under unfolding conditions, the cis-trans isomerizations of both Pro93 and Pro114 are independent of GdnHCl concentration. Remarkably, the isomerization rates under folding conditions at GdnHCl concentrations above 1 M are significantly slower than those measured under unfolding conditions. The temperature dependence of the Pro114 isomerization under folding conditions is also unusual; whereas Pro93 exhibits an activation energy typical of proline isomerization (19.4 kcal/mol), Pro114 exhibits a sharply reduced activation energy of 5.7 kcal/mol. A structurally plausible model accounts for these results and, in particular, shows that folding conditions strongly accelerate the cis-trans isomerization of both peptide groups to their native cis conformation, suggesting the presence of flickering local structure in their beta-hairpins.  相似文献   

4.
Unfolded ribonuclease (RNase) from porcine pancreas consists of a mixture of fast and slow-refolding species. The equilibrium distribution of these species differs strongly from other homologous RNases, because an additional proline residue is present at position 115 of the porcine protein. The major slow-folding species of porcine RNase contains incorrect proline isomers at Pro93 and at Pro114-Pro115. Both positions are presumably part of beta-turn structures in the native protein, as deduced from the structure of the homologous bovine RNase A. The folding kinetics of these molecules depend strongly on the conditions used. Under unfavorable conditions (near the unfolding transition), refolding is virtually blocked by the presence of the incorrect proline peptide bonds and partially folded intermediates with incorrect isomers could not be detected. As a consequence, folding is very slow under such conditions and the re-isomerization of Pro114-Pro115 is the first and rate-limiting step of folding. Under strongly native conditions (such as in the presence of ammonium sulfate), refolding is much faster. A largely folded intermediate accumulates with the turns around Pro93 and Pro114-Pro115 still in the non-native conformation. These results suggest that incorrect proline isomers strongly influence protein folding and that, under favorable conditions, the polypeptide chain can fold with two beta-turns locked into a non-native conformation. We conclude, therefore, that early formation of correct turn structure is not necessarily required for protein folding. However, the presence of incorrect turns, locked-in by non-native proline isomers, strongly decreases the rate of refolding. Alternative pathways of folding exist. The choice of pathway depends on the number and distribution of incorrect proline isomers and on the folding conditions.  相似文献   

5.
A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose isomerization reactions can limit folding.  相似文献   

6.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

7.
A K Bhuyan  J B Udgaonkar 《Biochemistry》1999,38(28):9158-9168
The kinetics of the slow folding and unfolding reactions of barstar, a bacterial ribonuclease inhibitor protein, have been studied at 23(+/-1) degrees C, pH 8, by the use of tryptophan fluorescence, far-UV circular dichroism (CD), near-UV CD, and transient mixing (1)H nuclear magnetic resonance (NMR) spectroscopic measurements in the 0-4 M range of guanidine hydrochloride (GdnHCl) concentration. The denaturant dependences of the rates of folding and unfolding processes, and of the initial and final values of optical signals associated with these kinetic processes, have been determined for each of the four probes of measurement. Values determined for rates as well as amplitudes are shown to be very much probe dependent. Significant differences in the intensities and rates of appearance and disappearance of several resolved resonances in the real-time one-dimensional NMR spectra have been noted. The NMR spectra also show increasing dispersion of chemical shifts during the slow phase of refolding. The denaturant dependences of rates display characteristic folding chevrons with distinct rollovers under strongly native as well as strongly unfolding conditions. Analyses of the data and comparison of the results obtained with different probes of measurement appear to indicate the accumulation of a myriad of intermediates on parallel folding and unfolding pathways, and suggest the existence of an ensemble of transition states. The energetic stabilities of the intermediates estimated from kinetic data suggest that they are approximately half as stable as the fully folded protein. The slowness of the folding and unfolding processes (tau = 10-333 s) and values of 20.5 (+/-1.4) and 18 (+/-0.5) kcal mol(-)(1) for the activation energies of the slow refolding and unfolding reactions suggest that proline isomerization is involved in these reactions, and that the intermediates accumulate and are therefore detectable because the slow proline isomerization reaction serves as a kinetic trap during folding.  相似文献   

8.
Refolding of b*C40A/C82A/P27A is comprised of several kinetically detectable folding phases. The slowest phase in refolding originates from trans-->cis isomerization of the Tyr47-Pro48 peptide bond being in cis conformation in the native state. This refolding phase can be accelerated by the peptidyl-prolyl cis/trans isomerase human cytosolic cyclophilin (Cyp18) with a kcat/K(M) of 254,000 M(-1) s(-1). The fast refolding phase is not influenced by the enzyme.  相似文献   

9.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

10.
To get new structural insights into different phases of the renaturation of ribonuclease T1 (RNase T1), the refolding of the thermally unfolded protein was initiated by rapid temperature jumps and detected by time-resolved Fourier-transform infrared spectroscopy. The characteristic spectral changes monitoring the formation of secondary structure and tertiary contacts were followed on a time scale of 10(-3) to 10(3) seconds permitting the characterization of medium and slow folding reactions. Additionally, structural information on the folding events that occurred within the experimental dead time was indirectly accessed by comparative analysis of kinetic and steady-state refolding data. At slightly destabilizing refolding temperatures of 45 degrees C, which is close to the unfolding transition region, no specific secondary or tertiary structure is formed within 180 ms. After this delay all infrared markers bands diagnostic for individual structural elements indicate a strongly cooperative and relatively fast folding, which is not complicated by the accumulation of intermediates. At strongly native folding temperatures of 20 degrees C, a folding species of RNase T1 is detected within the dead time, which already possesses significant amounts of antiparallel beta-sheets, turn structures, and to some degree tertiary contacts. The early formed secondary structure is supposed to comprise the core region of the five-stranded beta-sheet. Despite these nativelike characteristics the subsequent refolding events are strongly heterogeneous and slow. The refolding under strongly native conditions is completed by an extremely slow formation or rearrangement of a locally restricted beta-sheet region accompanied by the further consolidation of turns and denser backbone packing. It is proposed that these late events comprise the final packing of strand 1 (residues 40-42) of the five-stranded beta-sheet against the rest of this beta-sheet system within an otherwise nativelike environment. This conclusion was supported by the comparison of refolding of RNase T1 and its variant W59Y RNase T1 that enabled the assignment of these very late events to the trans-->cis isomerization reaction of the prolyl peptide bond preceding Pro-39.  相似文献   

11.
B T Nall 《Biochemistry》1986,25(10):2974-2978
Titration to high pH converts yeast iso-2 cytochrome c to an inactive but more stable alkaline form lacking a 695-nm absorbance band [Osterhout, J. J., Jr., Muthukrishnan, K., & Nall, B. T. (1985) Biochemistry 24, 6680-6684]. The kinetics of absorbance-detected refolding of the alkaline form have been measured by dilution of guanidine hydrochloride in a stopped-flow instrument. Fast-folding species (tau 2) are detected, as in refolding to the native state at neutral pH. An additional kinetic phase (tau a) is observed with an amplitude opposite in sign to the fast phase. The amplitude of this phase increases and the rate increases with increasing pH. Comparison to pH-jump measurements of the fully folded protein shows that phase tau a has the same sign, rate, and pH dependence as the alkaline isomerization reaction, suggesting that this new phase involves isomerization of native or nativelike species following fast folding. Absorbance difference spectra are taken at 5-s intervals during refolding at high pH. The spectra verify that nativelike species--with a 695-nm absorbance band--are formed transiently, before conversion of the protein to the alkaline form. Refolding in the presence of ascorbate shows that the transient, nativelike species are reducible, unlike alkaline iso-2. Thus, (1) refolding to the alkaline form of iso-2 cytochrome c proceeds through transient native or nativelike species, and (2) a folding pathway leading to native or nativelike forms is maintained at high pH, where native species are no longer the thermodynamically favored product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Bollen YJ  Sánchez IE  van Mierlo CP 《Biochemistry》2004,43(32):10475-10489
The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin. The denaturant dependence of the folding kinetics is complex. Under strongly unfolding conditions (>2.5 M GuHCl), single exponential kinetics are observed. The slope of the chevron plot changes between 3 and 5 M denaturant, and no additional unfolding process is observed. This reveals the presence of two consecutive transition states on a linear pathway that surround a high-energy on-pathway intermediate. Under refolding conditions, two processes are observed for the folding of apoflavodoxin molecules with native Xaa-Pro peptide bond conformations, which implies the population of an intermediate. The slowest of these two processes becomes faster with increasing denaturant concentration, meaning that an unfolding step is rate-limiting for folding of the majority of apoflavodoxin molecules. It is shown that the intermediate that populates during refolding is off-pathway. The experimental data obtained on apoflavodoxin folding are consistent with the linear folding mechanism I(off) <==> U <==> I(on) <== > N, the off-pathway intermediate being the molten globule one that also populates during equilibrium denaturation of apoflavodoxin. The presence of such on-pathway and off-pathway intermediates in the folding kinetics of alpha-beta parallel proteins is apparently governed by protein topology.  相似文献   

13.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.  相似文献   

14.
Folding of tendamistat is a rapid two-state process for the majority of the unfolded molecules. In fluorescence-monitored refolding kinetics about 8% of the unfolded molecules fold slowly (lambda=0.083s(-1)), limited by peptidyl-prolyl cis-trans isomerization. This is significantly less than expected from the presence of three trans prolyl-peptide bonds in the native state. In interrupted refolding experiments we detected an additional very slow folding reaction (lambda=0.008s(-1) at pH 2) with an amplitude of about 12%. This reaction is caused by the interconversion of a highly structured intermediate to native tendamistat. The intermediate has essentially native spectroscopic properties and about 2% of it remain populated in equilibrium after folding is complete. Catalysis by human cyclophilin 18 identifies this very slow reaction as a prolyl isomerization reaction. This shows that prolyl-isomerases are able to efficiently catalyze native state isomerization reactions, which allows them to influence biologically important regulatory conformational transitions. Folding kinetics of the proline variants P7A, P9A, P50A and P7A/P9A show that the very slow reaction is due to isomerization of the Glu6-Pro7 and Ala8-Pro9 peptide bonds, which are located in a region that makes strong backbone and side-chain interactions to both beta-sheets. In the P50A variant the very slow isomerization reaction is still present but native state heterogeneity is not observed any more, indicating a long-range destabilizing effect on the alternative native state relative to N. These results enable us to include all prolyl and non-prolyl peptide bond isomerization reactions in the folding mechanism of tendamistat and to characterize the kinetic mechanism and the energetics of a native-state prolyl isomerization reaction.  相似文献   

15.
The kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli involves four parallel channels whose inter-conversions are controlled by three cis/trans prolyl isomerization reactions (tau(1), tau(2) and tau(3)). A previous mutational analysis of all 19 proline positions, including the unique cis Asp27-Pro28 peptide bond, revealed that the G(3)P28G, P78A or P96A mutations selectively eliminated the fast, tau(1) (ten seconds), folding phase, while the P217M and P261A mutations eliminated the medium, tau(2) (40 seconds) and the slow, tau(3) ( approximately 300 seconds) folding phases, respectively. To further elucidate the role of these proline residues and to simplify the folding mechanism, a series of double and triple mutants were constructed at these critical positions, and comprehensive kinetic and thermodynamic experiments were performed. Although it was not possible to construct a stable system that was free of proline isomerization constraints, a double mutant variant, G(3)P28G/P217M, in which the refolding of more than 90% of the unfolded protein is not limited by proline isomerization reactions was identified. Further, long-range interactions between several of these residues appear to be a crucial part of the cooperative network of structure that stabilizes the TIM barrel motif for alphaTS.  相似文献   

16.
The refolding of ribonuclease T1 is dominated by two major slow kinetic phases that show properties of proline isomerization reactions. We report here that the molecular origin of one of these processes is the trans----cis isomerization of the Ser54-Pro55 peptide bond, which is cis in the native protein but predominantly trans in unfolded ribonuclease T1. This is shown by a comparison of the wild type and a designed mutant protein where Ser54 and Pro55 were replaced by Gly54 and Asn55, respectively. This mutation leaves the thermal stability of the protein almost unchanged; however, in the absence of Pro55 one of the two slow phases in folding is abolished and the kinetic mechanism of refolding is dramatically simplified.  相似文献   

17.
Nature of the fast and slow refolding reactions of iron(III) cytochrome c   总被引:2,自引:0,他引:2  
The fast and slow refolding reactions of iron(III) cytochrome c (Fe(III) cyt c), previously studied by Ikai et al. (Ikai, A., Fish, W. W., & Tanford, C. (1973) J. Mol. Biol. 73, 165--184), have been reinvestigated. The fast reaction has the major amplitude (78%) and is 100-fold faster than the slow reaction in these conditions (pH 7.2, 25 degrees C, 1.75 M guanidine hydrochloride). We show here that native cyt c is the product formed in the fast reaction as well as in the slow reaction. Two probes have been used to test for formation of native cyt c. absorbance in the 695-nm band and rate of reduction of by L-ascorbate. Different unfolded species (UF, US) give rise to the fast and slow refolding reactions, as shown both by refolding assays at different times after unfolding ("double-jump" experiments) and by the formation of native cyt c in each of the fast and slow refolding reactions. Thus the fast refolding reaction is UF leads to N and the slow refolding reaction is Us leads to N, where N is native cyt c, and there is a US in equilibrium UF equilibrium in unfolded cyt c. The results are consistent with the UF in equilibrium US reaction being proline isomerization, but this has not yet been tested in detail. Folding intermediates have been detected in both reactions. In the UF leads to N reaction, the Soret absorbance change precedes the recovery of the native 695-nm band spectrum, showing that Soret absorbance monitors the formation of a folding intermediate. In the US leads to N reaction an ascorbate-reducible intermediate has been found at an early stage in folding and the Soret absorbance change occurs together with the change at 695 nm as N is formed in the final stage of folding.  相似文献   

18.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

19.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

20.
The kinetics and thermodynamics of the folding of the homologous four-helix proteins Im7 and Im9 have been characterised at pH 7.0 and 10 degrees C. These proteins are 60 % identical in sequence and have the same three-dimensional structure, yet appear to fold by different kinetic mechanisms. The logarithm of the folding and unfolding rates of Im9 change linearly as a function of urea concentration and fit well to an equation describing a two-state mechanism (with a folding rate of 1500 s-1, an unfolding rate of 0. 01 s-1, and a highly compact transition state that has approximately 95 % of the native surface area buried). By contrast, there is clear evidence for the population of an intermediate during the refolding of Im7, as indicated by a change in the urea dependence of the folding rate and the presence of a significant burst phase amplitude in the refolding kinetics. Under stabilising conditions (0.25 M Na2SO4, pH 7.0 and 10 degrees C) the folding of Im9 remains two-state, whilst under similar conditions (0.4 M Na2SO4, pH 7.0 and 10 degrees C) the intermediate populated during Im7 refolding is significantly stabilised (KUI=125). Equilibrium denaturation experiments, under the conditions used in the kinetic measurements, show that Im7 is significantly less stable than Im9 (DeltaDeltaG 9.3 kJ/mol) and the DeltaG and m values determined accord with those obtained from the fit to the kinetic data. The results show, therefore, that the population of an intermediate in the refolding of the immunity protein structure is defined by the precise amino acid sequence rather than the global stability of the protein. We discuss the possibility that the intermediate of Im7 is populated due to differences in helix propensity in Im7 and Im9 and the relevance of these data to the folding of helical proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号