首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The guanidinium chloride-unfolded state of ribonuclease A was found to be an equilibrium mixture of slow- and fast-refolding forms of the protein chain, as has been suggested. Both forms appear to have the same spectroscopic observables as judged by the relative changes in fluorescence emission and polarization. The equilibrium between them is thermally dependent, with deltaHapp equal to -1.4 kcal/mol. The activation energy Ea is equal to 18 kcal/mol. These findings are consistent with the proposal that cis-trans isomerism of peptide bonds that are NH2-terminal to proline residues is responsible for the slow phase of RNase A refolding. However, the actual dependence of the magnitude of the slow reaction on initial, prefolding temperature cannot be explained by a model in which the proline configurations of the fast refolding form must be identical to those of the native protein, as has been suggested. Instead, the data reveal that, although the native structure of RNase A contains two cis prolines, cis isomers need not be present in the fast-refolding form in order for folding to occur.  相似文献   

2.
The peptide bond preceding proline residues realizes a cis/trans conformational switch with high switching resistance in native proteins and folding intermediates. Therefore, individual isomers have the potential to differ in bioactivity. However, information about isomer-specific bioactivities is difficult to obtain because of the risk of affecting isomeric distribution by bioactivity assay components.Here we present an approach that allows for the measurement of the recovery of enzymatic activities of wild-type RNase T1 and RNase T1 variants during refolding under conditions where the population of enzyme-substrate or enzyme-product complexes is negligible. Recovery of enzymatic activity was continuously monitored within the visible range of the spectrum by addition of a fluorescence-labeled nucleotide substrate to the refolding sample. We found that a nonnative trans conformation at Pro39 renders the RNase T1 almost completely inactive. A folding intermediate having a nonnative trans conformation at Pro55 shows about 46% of the enzymatic activity referred to the native state. Pro55, in contrast to the active site located Pro39, is situated in a solvent-exposed loop region remote from active-site residues. In both cases, peptidyl prolyl cis/trans isomerases accelerate the regain of nucleolytic activity. Our findings show that even if there is a considerable distance between the site of isomerization and the active site, conformational control of the bioactivity of proteins is likely to occur, and that the surface location of prolyl bonds suffices for the control of buried active sites mediated by peptidyl prolyl cis/trans isomerases.  相似文献   

3.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

4.
The refolding of reduced ribonuclease A has been studied by measurements of enzymatic activity under conditions where the oxidation of thiol groups into disulfide bonds is rather slow. The sensitivity to a treatment by N-ethylmaleimide has been used to distinguish between partially and totally oxidized active species. It is found that the first active protein molecules to be formed do not have all of their disulfide bonds. Because they are active, these partially oxidized intermediates probably have very close to native conformation, which they can reach without being trapped in a wrong structure by forming too many incorrect disulfide bonds. The significance of these intermediates to the refolding pathway of reduced ribonuclease is discussed.  相似文献   

5.
Bhat R  Wedemeyer WJ  Scheraga HA 《Biochemistry》2003,42(19):5722-5728
The kinetics of cis-trans isomerization of individual X-Pro peptide groups is used to study the backbone dynamics of bovine pancreatic ribonuclease A (RNase A). We previously developed and validated a fluorescence method for monitoring the cis-trans isomerization of the Tyr92-Pro93 and Asn113-Pro114 peptide groups of RNase A under unfolding conditions [Juminaga, D., Wedemeyer, W. J., and Scheraga, H. A. (1998) Biochemistry 37, 11614-11620]. The essence of this method is to introduce a fluorescent residue (Tyr or Trp) in a position adjacent to the isomerizing proline (if one is not already present) and to eliminate the fluorescence of other such residues adjacent to prolines by mutating them to phenylalanine. Here, we extend this method to observe the cis-trans isomerization of these peptide groups under folding conditions using two site-directed mutants (Y92F and Y115F) of RNase A. Both isomerizations decelerate with increasing concentrations of GdnHCl, with nearly identical m values (1.11 and 1.19 M(-1), respectively) and extrapolated zero-GdnHCl time constants (42 and 32 s, respectively); by contrast, under unfolding conditions, the cis-trans isomerizations of both Pro93 and Pro114 are independent of GdnHCl concentration. Remarkably, the isomerization rates under folding conditions at GdnHCl concentrations above 1 M are significantly slower than those measured under unfolding conditions. The temperature dependence of the Pro114 isomerization under folding conditions is also unusual; whereas Pro93 exhibits an activation energy typical of proline isomerization (19.4 kcal/mol), Pro114 exhibits a sharply reduced activation energy of 5.7 kcal/mol. A structurally plausible model accounts for these results and, in particular, shows that folding conditions strongly accelerate the cis-trans isomerization of both peptide groups to their native cis conformation, suggesting the presence of flickering local structure in their beta-hairpins.  相似文献   

6.
The refolding of urea-denatured ribonuclease A was measured at 0.31-3.1 mol . l-1 urea in the presence of various concentrations of peptidyl-prolyl cis-trans isomerase isolated from pig kidney. The rate of the slow CT-phase in the refolding reaction was found to be sensitive to this enzyme. A rate enhancement proportional to the isomerase activity has been observed. The activity of the enzyme was assayed with Glt-Ala-Ala-Pro-Phe-4-nitroanilide. The catalytic activity of the isomerase against unfolded ribonuclease is suppressed after preincubation of the enzyme with 0.001 mol . l-1 Cu2+, 0.01 mol . l-1 H+ and by heat inactivation. The results indicate the involvement of the cis/trans interconversion of proline peptide bonds during the refolding of ribonuclease A.  相似文献   

7.
D N Brems  R L Baldwin 《Biochemistry》1985,24(7):1689-1693
pH-pulse exchange curves have been measured for samples taken during the folding of ribonuclease A. The curve gives the number of protected amide protons remaining after a 10-s pulse of exchange at pHs from 6.0 to 9.5, at 10 degrees C. Amide proton exchange is base catalyzed, and the rate of exchange increases 3000-fold between pH 6.0 and pH 9.5. The pH at which exchange occurs depends on the degree of protection against exchange provided by structure. Pulse exchange curves have been measured for samples taken at three times during folding, and these are compared to the pulse exchange curves of N, the native protein, of U, the unfolded protein in 4 M guanidinium chloride, and of IN, the native-like intermediate obtained by the prefolding method of Schmid. The results are used to determine whether folding intermediates are present that can be distinguished from N and U and to measure the average degree of protection of the protected protons in folding intermediates. The amide (peptide NH) protons of unfolded ribonuclease A were prelabeled with 3H by a previous procedure that labels only the slow-folding species. Folding was initiated at pH 4.0, 10 degrees C, where amide proton exchange is slower than the folding of the slow-folding species. Samples were taken at 0-, 10-, and 20-s folding, and their pH-pulse exchange curves were measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of the strong stabilizing anion, phosphate, on the oxidative folding of bovine pancreatic ribonuclease A were examined. Phosphate was found to catalyze several steps involved in the oxidative folding process at pH 8.0 and 25°C, resulting in an increase in the rate of pre-equilibration of unstructured species on the folding pathway. In the presence of 400 mM phosphate, the overall increase in the rate of regeneration of native protein was caused primarily by the increased formation and stabilization of tertiary structure in the nativelike intermediates, des-[40-95] and des-[65-72], involved in the rate-determining step. Based on the regeneration of native protein and the stability of Cys Ala substituted mutant analogs of the des-species, (C40A, C95A) and (C65A, C72A), it is suggested that the primary role of phosphate is to catalyze the overall regeneration of native protein through nonspecific electrostatic and hydrogen-bonding effects on the protein and solvent.  相似文献   

9.
The method aforementioned (Liu, W. and Tsou, C.L. (1987) Biochim. Biophys. Acta 916, 455-464) for the study of the kinetics of irreversible modification of enzyme activity has been applied to the reactivation of guanidine-denatured ribonuclease A, by following the hydrolysis of cyclic CMP during refolding upon diluting a guanidine-denatured enzyme with a substrate-containing buffer. Appropriate equations have been derived to deal with the kinetics of the substrate reaction during the course of activation, while the product formed, 3'CMP, is a competitive inhibitor. When the overall process consists of multiple first-order reactions, the individual rate constants could be obtained by suitable semilogarithmic plots. Moreover, in certain cases, it can be distinguished from the shapes of the plots, whether the overall process consists of parallel or consecutive first-order reactions. The kinetics for the reactivation reaction has been compared to that for the refolding of the substrate binding site, as indicated by complex formation with the competitive inhibitor, 2'CMP, and for the refolding of the molecule as a whole. At pH 6.0 and 25 degrees C, only monophasic first-order reactions could be detected by manual mixing for both the reactivation and the refolding processes. At lower temperatures (0-10 degrees C), both processes consist of two first-order reactions. In all cases, the same rate constants have been obtained for the refolding and reactivation reactions.  相似文献   

10.
《Biophysical journal》2021,120(23):5207-5218
The conserved fold of thioredoxin (Trx)-like thiol/disulfide oxidoreductases contains an invariant cis-proline residue (P76 in Escherichia coli Trx) that is essential for Trx function and that is responsible for the folding rate-limiting step. E. coli Trx contains four additional prolines, which are all in the trans conformation in the native state. Notably, a recent study revealed that replacement of all four trans prolines in Trx by alanines (Trx variant Trx1P) further slowed the rate-limiting step 25-fold, indicating that one or several of the four trans prolines accelerate the trans-to-cis transition of P76 in Trx wild-type (wt). Here, we characterized the folding kinetics of Trx variants containing cisP76 and one or several of the natural trans prolines of Trx wt with NMR spectroscopy. First, we demonstrate that the isomerization reaction in Trx1P is a pure two-state transition between two distinct tertiary structures, in which all observed NMR resonances changes follow the same first-order kinetics. Moreover, we show that trans-P68 is the critical residue responsible for the faster folding of wt Trx relative to the single-proline (P76) variant Trx1P, as the two-proline variant Trx2P(P76P68) already folds seven times faster than Trx1P. trans-P34 also accelerates trans-to-cis isomerization of P76, albeit to a smaller extent. Overall, the results demonstrate that trans prolines can significantly modulate the kinetics of rate-limiting trans-to-cis proline isomerization in protein folding. Finally, we discuss possible mechanisms of acceleration and the potential significance of a protein-internal folding acceleration mechanism for Trx in a living cell.  相似文献   

11.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

12.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

13.
We use the procedure established for 'disulfide stability analysis in redox system' to investigate the unfolding process of porcine insulin precursor (PIP). Six major unfolding intermediates have been captured, in which four contain two disulfides, two contain one disulfide. Based on the characterization and analysis of the intermediates an unfolding pathway has been proposed, by which the native PIP unfolded through in turn 2SS and 1SS intermediates into fully reduced form. Besides, the comparison of the intermediates captured in PIP unfolding process with those intermediates captured in its refolding process revealed that some intermediates captured during both unfolding/refolding processes of PIP have identical disulfide pairing pattern, from which we suggest that the unfolding/refolding processes of PIP share some common intermediates but flow in the opposite direction.  相似文献   

14.
L N Lin  J F Brandts 《Biochemistry》1988,27(25):9037-9042
In an effort to determine structural properties of the nativelike intermediate (i.e., IN) which forms during the refolding of RNase A, refolding samples were subjected to rapid HPLC gel filtration which allowed us to separate IN from unfolded forms of RNase. The comparison of these samples, enriched in IN and depleted of unfolded forms, with unseparated control samples at the same stage of refolding allowed certain conclusions to be drawn concerning the properties of IN. First, the results show that the transition from IN to native RNase occurs with only small changes in fluorescence. This means that the major fluorescence changes seen during normal refolding experiments must be associated with changes in proline isomerization of unfolded species and/or with the refolding step itself but not with the IN----N step. Second, the fluorescence assay for isomerization of proline-93 shows that IN exists with proline-93 in a state of isomerization identical with or very similar to native RNase; i.e., proline-93 is cis in IN and not trans as suggested by others. All results are semiquantitatively consistent with our earlier refolding model and not nearly so consistent with alternative models which assume that most or all of the slow-refolding forms of RNase have proline-93 in the incorrect trans state.  相似文献   

15.
The acylphosphatase from Escherichia coli (EcoAcP) is the first AcP so far studied with a disulfide bond. A mutational variant of the enzyme lacking the disulfide bond has been produced by substituting the two cysteine residues with alanine (EcoAcP mutational variant C5A/C49A, mutEcoAcP). The native states of the two protein variants are similar, as shown by far-UV and near-UV circular dichroism and dynamic light-scattering measurements. From unfolding experiments at equilibrium using intrinsic fluorescence and far-UV circular dichroism as probes, EcoAcP shows an increased conformational stability as compared with mutEcoAcP. The wild-type protein folds according to a two-state model with a very fast rate constant (kFH2O = 72,600 s− 1), while mutEcoAcP folds ca 1500-fold slower, via the accumulation of a partially folded species. The correlation between the hydrophobicity of the polypeptide chain and the folding rate, found previously in the AcP-like structural family, is maintained only when considering the mutant but not the wild-type protein, which folds much faster than expected from this correlation. Similarly, the correlation between the relative contact order and the folding rate holds only for mutEcoAcP. The correlation also holds for EcoAcP, provided the relative contact order value is recalculated by considering the disulfide bridge as an alternate path for the backbone to determine the shortest sequence separation between contacting residues. These results indicate that the presence of a disulfide bond in a protein is an important determinant of the folding rate and allows its contribution to be determined in quantitative terms.  相似文献   

16.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

17.
The kinetics of refolding of ribonuclease A have been measured at -15 degrees C by monitoring the intrinsic fluorescence and absorbance signals from the six tyrosine residues. For each probe multiphasic kinetics were observed. The burial of tyrosine residues, as determined by the change in absorbance at 286 nm, revealed four phases, whereas the kinetics of refolding monitored by fluorescence revealed only two phases. The rates of the transients detected by fluorescence were independent of pH. One of the faster transients detected by delta A286 involved a decrease in absorbance, which is consistent with solvent exposure, rather than burial, and suggests the possibility of an abortive partially folded intermediate in the earlier stages of folding. Double-jump unfolding assays were used to follow the buildup and decay of an intermediate in the refolding reaction at -15 degrees C. At both pH* 3.0 and pH* 6.0 the maximum concentration of the intermediate was 25-30% of the total protein. The existence of a second pathway of slow folding was inferred from the difference in rate of formation of native enzyme and breakdown of the observed intermediate, and by computer simulations. In addition, the unfolding assay demonstrated that 20% of the unfolded protein was converted to native at a much faster rate, consistent with observations in aqueous solution that 80% of unfolded ribonuclease A consists of slow-folding species. Kinetics and amplitude data from these and other refolding experiments with different probes were used to develop possible models for the pathway of refolding. The simplest system consistent with the results for the slow-refolding species involves two parallel pathways with multiple intermediates on each of them. Several independent lines of evidence indicate that about 30% of the unfolded state refolds by the minor pathway, in which the slowest observed phase is attributed to the isomerization of Pro-93. The major pathway involves 50% of the unfolded state; the reason why it refolds slowly is not apparent. A native-like intermediate is formed considerably more rapidly in the major slow-refolding pathway, compared to the minor pathway.  相似文献   

18.
Phosphate anions accelerate the oxidative folding of reduced bovine pancreatic ribonuclease A with dithiothreitol at several temperatures and ionic strengths. The addition of 400 mM phosphate at pH 8.1 increased the regeneration rate of native protein 2.5-fold at 15 degrees C, 3.5-fold at 25 degrees C, and 20-fold at 37 degrees C, compared to the rate in the absence of phosphate. In addition, the effects of other ions on the oxidative folding of RNase A were examined. Fluoride was found to accelerate the formation of native protein under the same oxidizing conditions. In contrast, cations of high charge density or ions with low charge density appear to have an opposite effect on the folding of RNase A. The catalysis of oxidative folding results largely from an anion-dependent stabilization and formation of tertiary structure in productive disulfide intermediates (des-species). Phosphate and fluoride also accelerate the initial equilibration of unstructured disulfide ensembles, presumably due to non-specific electrostatic and hydrogen bonding effects on the protein and solvent.  相似文献   

19.
F Schmid  H Blaschek 《Biochemistry》1984,23(10):2128-2133
Folding of bovine pancreatic ribonuclease A (RNase A) is a sequential process which involves the formation of well-populated structural intermediates under suitable conditions. Two intermediates have been detected on the major slow-refolding pathway of RNase A: a late intermediate (IN) which already resembles the native protein in a number of properties and a rapidly formed early intermediate (I1) which shows extensive hydrogen-bonded secondary structure. Here competition experiments between refolding and proteolytic cleavage of the peptide chain are described which yield information about the decrease in accessibility of particular proteolytic cleavage sites during the folding process. Results obtained with pepsin as a proteolytic probe of folding indicate that the primary cleavage site for pepsin, Phe-120-Asp-121, becomes inaccessible early in the course of refolding, if folding is carried out under conditions which effectively stabilize the native state. Under marginally stable conditions, folding is very slow, and protection against peptic cleavage is not detectable prior to the final formation of native protein. The comparison with amide proton exchange experiments suggests that the protection against peptic cleavage occurs during the formation and/or stabilization of hydrogen-bonded secondary structure in the early intermediate (I1). We conclude that the carboxy-terminal region of the RNase peptide chain, which is known to be important for the stability of the folded protein, may also be relevant for early steps of refolding.  相似文献   

20.
Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号