首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After having reconstituted in artificial membranes the calcium-dependent acetylcholine release step, and shown that essential properties of the mechanism were preserved, we purified from Torpedo electric organ nerve terminals a protein, the mediatophore, able to release acetylcholine upon calcium action. A plasmid encoding for Torpedo mediatophore was introduced into cells deficient for acetylcholine release and for the expression of the cholinergic genomic locus defined by the co-regulated choline acetyltransferase and vesicular transporter genes. The transfected cells became able to release acetylcholine in response to a calcium influx in the form of quanta. The cells had to be loaded with acetylcholine since they did not synthesize it, and without transporter they could not concentrate it in vesicles. We may then attribute the observed quanta to mediatophores. We know from previous works that like the release mechanism, mediatophore is activated at high calcium concentrations and desensitized at low calcium concentrations. Therefore only the mediatophores localized within the calcium microdomain would be activated synchronously. Synaptic vesicles have been shown to take up calcium and those of the active zone are well situated to control the diffusion of the calcium microdomain and consequently the synchronization of mediatophores. If this was the case, synchronization of mediatophores would depend on vesicular docking and on proteins ensuring this process.  相似文献   

2.
Abstract: Mediatophore is a protein that translocates acetylcholine (ACh) on calcium action. It is a homopolymer of a 15-kDa proteolipid that is also a constituent of the membrane sector of vacuolar H+-adenosine trisphosphatase (V-ATPase; vacuolar proton pump). Experiments on neuroblastoma cell lines (N18TG-2) that are deficient for ACh release and on cells that are competent for release, such as the glioma C6BU-1 or the N18TG-2/C6BU-1 fusion product NG108-15, show that there is a correlation between ACh release and the 15-kDa proteolipid content of the cell membrane. In another cell line, L-M(TK), it has been possible to up-regulate ACh release and the membrane proteolipid content after treating the cells with dibutyryl-cyclic AMP or dexamethasone. As mediatophore translocates ACh and as V-ATPase may help vesicular ACh storage, it was interesting to determine the respective role of the two proteins in the observed correlation between release and proteolipid content. After blocking vesicular loading with vesamicol, we did not affect release from these cells, suggesting that the observed correlation may be attributed to mediatophore. The acquisition of an ACh release mechanism would then depend on the process that guides the proteolipid to the plasma membrane of the cell.  相似文献   

3.
Proteoliposomes obtained from the mediatophore, a purified Torpedo electric organ nerve terminals protein, and endogenous lipids were used for a study of calcium-induced release of acetylcholine and freeze-fracture electron microscopy. Large intramembrane particles were induced by the influx of calcium into proteoliposomes, as previously observed for synaptosomes or stimulated electric organ nerve terminals. The involvement of mediatophore in a calcium dependent acetylcholine translocation seems therefore to be related to the occurrence of a category of intramembrane particles in the course of the release process.  相似文献   

4.
The mediatophore is a presynaptic membrane protein that has been shown to translocate acetylcholine (ACh) under calcium stimulation when reconstituted into artificial membranes. The mediatophore subunit, a 15-kDa proteolipid, presents a very high sequence homology with the N,N'-dicyclohexylcarbodiimide (DCCD)-binding proteolipid subunit of the vacuolar-type H(+)-ATPase. This prompted us to study the effect of DCCD, a potent blocker of proton translocation, on calcium-dependent ACh release. The present work shows that DCCD has no effect on ACh translocation either from Torpedo synaptosomes or from proteoliposomes reconstituted with purified mediatophore. However, using [14C]DCCD, we were able to demonstrate that the drug does bind to the 15-kDa proteolipid subunit of the mediatophore. These results suggest that although the 15-kDa proteolipid subunits of the mediatophore and the vacuolar H(+)-ATPase may be identical, different domains of these proteins are involved in proton translocation and calcium-dependent ACh release and that the two proteins have a different membrane organization.  相似文献   

5.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

6.
Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus. Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes ofTorpedo nerve terminal; it confers a specificity for ACh to the release process. The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.  相似文献   

7.
A "fatigue" of acetylcholine (ACh) release is described in cholinergic synaptosomes stimulated with the calcium ionophore A23187 or gramicidin. A small conditioning calcium entry, which did not trigger a large ACh release, led to a decrease of transmitter release elicited by a second large calcium influx. This fatigue was half-maximal at approximately 30 microM external calcium and developed in a few minutes. In contrast, activation of release by calcium was very rapid and was half-maximal at approximately 0.5 mM external calcium. Activation and desensitization of release could be attributed to the recently identified presynaptic membrane protein, the "mediatophore." Proteoliposomes equipped with purified mediatophore showed a calcium-dependent activation and "fatigue" of ACh release similar to that of synaptosomes. It was found that the ionophore A23187 rapidly equilibrated internal and external calcium concentrations in proteoliposomes. Thus, the external calcium concentration gave the internal concentration required for activation or desensitization of proteoliposomal ACh release. The mediatophore showed remarkable calcium binding properties (20 sites/molecule) with a KD of 25 microM. The physiological implications of desensitization on the organization of release sites are discussed.  相似文献   

8.
A protein, the mediatophore, has been purified from Torpedo electric organ presynaptic plasma membranes. This protein mediates the release of acetylcholine through artificial membranes when activated by calcium and is made up of 15-kDa proteolipid subunits. After immunization with purified delipidated mediatophore, monoclonal antibodies binding to the 15-kDa proteolipid band on Western blots of purified mediatophore were selected. A 15-kDa proteolipid antigen was also detected in cholinergic synaptic vesicles. Using an immunological assay, it was estimated that presynaptic plasma membranes and synaptic vesicles contain similar proportions of 15-kDa proteolipid antigen. Detection by immunofluorescence in the electric organ showed that only nerve endings were labeled. In electric lobes, the staining was associated with intracellular membranes of the electroneuron cell bodies and in axons. Nerve endings at Torpedo neuromuscular junctions were also labeled with anti-15-kDa proteolipid monoclonal antibodies.  相似文献   

9.
Monoclonal antibodies were raised against the synaptosomal plasma membranes (SPMs) purified from the electric organ of the Torpedo. One antibody that reacts preferentially with SPMs rather than with other membrane fractions isolated from this tissue was previously found to inhibit hydrophilic and amphiphilic choline-O-acetyltransferase (ChAT) activity. On immunoblots of SPMs, this antibody recognizes two polypeptides of 135 and 66 kilodaltons that are related; the 66-kilodalton polypeptide appears to exist as a monomer and as a dimer in SPMs. The antibody was also able to inhibit the calcium-dependent release of acetylcholine in Torpedo synaptosomes without affecting the total neurotransmitter content. This inhibition was dependent on the antibody concentration and was observed when the release was elicited by either KCl depolarization or the calcium ionophore A23187; this suggests that inhibition was not mediated by a blockage of the depolarization-activated calcium influx. The inhibition could not be prevented by atropine, a result indicating that the antibody does not block release by mimicking the action of acetylcholine on presynaptic muscarinic autoreceptors. Thus, the antigen recognized by this antibody appeared to be involved in acetylcholine release; this antigen could be membrane-bound ChAT, another protein of the SPMs, or both.  相似文献   

10.
Xenopus laevis oocytes were injected with poly(A)+ mRNAs extracted from the electric lobes of Torpedo marmorata. The electric lobes contain the perikarya of approximately 120,000 cholinergic neurons that innervate the electric organs and are homologous to motor neurons. The injected oocytes accumulated acetylcholine and were able to synthesize [14C]acetylcholine from 1-[14C]acetate. With KCl depolarization and upon treatment with a Ca2+ ionophore, they released their endogenous as well as the radiolabelled neurotransmitter in a Ca(2+)-dependent manner. No synthesis or release were obtained from control oocytes. With respect to their dependency upon Ca2+ concentration, the oocytes injected with Torpedo electric lobe mRNAs released acetylcholine in a manner which closely resembled that found in the native synapses. In contrast to the controls, primed oocytes were also able to release [14C]acetylcholine that was injected a few hours prior to the release trial. Immunoblot analysis demonstrated that the 15 kd proteolipid antigen of the purified mediatophore, a 200 kd presynaptic protein able to translocate acetylcholine, was expressed in the ACh-releasing oocytes but not in the controls. The present observation may provide a useful approach for investigating the proteins involved in the release of acetylcholine and of other neurotransmitter substances.  相似文献   

11.
A protein (the mediatophore) purified from Torpedo electric organ nerve terminals was identified by its ability to translocate acetylcholine upon calcium action. The recent large scale production of this protein led us to prepare a polyclonal antibody that was used to study the localization of the protein.  相似文献   

12.
In previous work, it was shown that cytoplasmic acetylcholine decreased on stimulation of Torpedo electric organ or synaptosomes in a strictly calcium-dependent manner. This led to the hypothesis that the presynaptic membrane contained an element translocating acetylcholine when activated by calcium. To test this hypothesis, the presynaptic membrane constituents were incorporated into the membranes of liposomes filled with acetylcholine. The proteoliposomes thus obtained released the transmitter in response to a calcium influx. The kinetics and calcium dependency of acetylcholine release were comparable for proteoliposomes and synaptosomes. The presynaptic membrane element ensuring calcium-dependent acetylcholine release is most probably a protein, since it was susceptible to Pronase, but only when the protease had access to the intracellular face of the presynaptic membrane. Postsynaptic membrane fractions contained very low amounts of this protein. It was extracted from the presynaptic membrane under alkaline conditions in the form of a protein-lipid complex of large size and low density which was partially purified. The specificity of the calcium-dependent release for acetylcholine was tested with proteoliposomes filled with equal amounts of acetylcholine and choline or acetylcholine and ATP. In both cases, acetylcholine was released preferentially. After cholate solubilization and gel filtration, the protein ensuring the calcium-dependent acetylcholine release was recovered at a high apparent molecular weight (between 600,000 and 200,000 daltons), its apparent sedimentation coefficient being 17S after cholate elimination. This protein is probably an essential coin of the transmitter release mechanism. We propose to name it mediatophore.  相似文献   

13.
Is the acetylcholine releasing protein mediatophore present in rat brain?   总被引:2,自引:0,他引:2  
Mediatophore is a protein purified from the nerve terminal membranes of Torpedo electric organ. It confers to artificial membranes a calcium-dependent mechanism that translocates acetylcholine. When similar reconstitution experiments are applied to rat brain synaptosomal membranes they reveal the presence of mediatophore activity with properties close to those described for the Torpedo protein (extractability, sensitivity to calcium, and effect of the drug cetiedil). The activity was more abundant in synaptosomal membranes than in mitochondrial or myelinic membranes and in cholinergic areas as compared to cerebellum.  相似文献   

14.
15.
Abstract— Changes in ‘free’ and ‘bound’ acetylcholine before and after stimulation have been investigated in vivo and in slices of electric organ of Torpedo marmorata incubated or superfused with physiological saline solutions. Spontaneous miniature end-plate potentials could be recorded and on electrical stimulation discharges of up to 30 V could be elicited. The electrical response fell off rapidly on repetitive stimulation. ‘Bound’ acetylcholine is that which relhains after the tissue has been homogenized since any ‘free’ acetylcholine is hydrolysed by the esterases when the tissue is disrupted. ‘Free’ acetylcholine can therefore be determined as the difference between the total acetylcholine found when the tissue is extracted with trichloroacetic acid and that which remains when the tissue is homogenized. Most of the ‘bound’ acetylcholine is present in synaptic vesicles. Stimulation of the tissue until the electrical response had fallen was accompanied by a drop in the level of ‘free’ acetylcholine. Lowered calcium and increased magnesium concentrations in the medium caused a decrease in the electrical response to stimulation and a decrease in the fall of ‘free’ acetylcholine. In other experiments, a decrease of both compartments was noticed at the end of the stimulation period. However the drop in ‘bound’ acetylcholine could also be elicited after the ‘free’ had fallen, by continuing the stimulation. When anticholinesterases were put in the medium, acetylcholine released on stimulation could be collected. On pre-incubation of the slice with [14C]choline, the acetylcholine stores became labelled. The specific radioactivity of the ‘free’ acetylcholine fluctuated on serial stimulations, whereas the specific radioactivity of the ‘bound’ acetylcholine remained stable under these experimental conditions. It is concluded that the ‘free’ compartment of acetylcholine is the most immediately available for release on stimulation.  相似文献   

16.
Y Kimura  Y Oda  T Deguchi  H Higashida 《FEBS letters》1992,314(3):409-412
Neuroblastoma x glioma hybrid NG108-15 cells and mouse neuroblastoma N18TG-2 and N1E-115 cells were transiently transfected with the sense cDNA coding for rat choline acetyltransferase (ChAT). All transfected cell lines showed a high level of ChAT activity. ACh secretion was monitored by recording miniature end-plate potentials (MEPPs) in striated muscle cells that had been co-cultured with transfected cells. The number of muscle cells with synaptic responses and the MEPP frequency were higher in co-culture with transfected NG108-15 cells than with control or mock cells. No synaptic response was detected in muscle cells co-cultured with transfected N18TG-2 or N1E-115 cells. The results show that ACh secretion into the synaptic cleft was enhanced due to ChAT overexpression in NG108-15 hybrid cells but not in neuroblastoma cells.  相似文献   

17.
The effects of cetiedil, a vasodilatator substance with reported anticholinergic properties, were examined on cholinergic presynaptic functions at the nerve electroplaque junction of Torpedo marmorata using either synaptosomes or slices of intact tissue. Cetiedil abolished the calcium-dependent release of acetylcholine (ACh) triggered by depolarization or by addition of A23187 ionophore, a finding localizing the site of action downstream from the calcium entry step. In addition, a direct effect on the release process itself was indicated by the observation that cetiedil blocks the release of ACh mediated by a recently isolated presynaptic membrane protein, the mediatophore, reconstituted into ACh-containing proteoliposomes. In all three preparations, ACh release was inhibited by cetiedil with a Ki of 5-8 microM. Under the conditions used in these release experiments, the synthesis of ACh and its compartmentation within the nerve terminals were not modified. However, the drug was able to reduce high-affinity choline uptake and vesicular ACh incorporation when it was given together with the radioactive precursor, a result showing that cetiedil has a broad inhibitory action on cholinergic uptake processes.  相似文献   

18.
19.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

20.
 为观察胞外Ca2 + 内流和肌浆网Ca2 + 释放两种来源的Ca2 + 对cPKCα转位激活的影响 ,揭示PKC在去极化 nAChR转录偶联中的作用 ,构建了pPKCα EGFP N1融合蛋白真核基因表达载体 .转染C2C1 2肌细胞后 ,采用激光共聚焦显微镜记录了KC1或咖啡因处理所引起的细胞Ca2 + 波变化及PKCα GFP融合蛋白在细胞内的分布 .结果提示 ,只有用KC1处理引起细胞膜去极化时 ,伴随Ca2 +内流 ,才能观察到PKCα GFP绿色荧光在细胞内发生的细胞浆至细胞膜分布变化 .然而 ,采用肌浆网Ca2 + 通道激动剂咖啡因刺激肌细胞 ,使肌浆网中Ca2 + 释放 ,未见PKCα GFP绿色荧光在浆、膜分布发生任何变化 .结果提示 ,去极化时外Ca2 + 内流可引起PKCα转位激活 ,肌浆网Ca2 + 释放对PKCα的转位激活没有影响 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号