首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMR study of the alkaline isomerization of ferricytochrome c   总被引:1,自引:0,他引:1  
X L Hong  D W Dixon 《FEBS letters》1989,246(1-2):105-108
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively.  相似文献   

2.
The site and mechanism of dioxygen reduction in cytochrome c oxidase from bovine heart muscle have been investigated. The rate of cytochrome c2+ oxidation by O2 is shown to be affected by several factors: 1) pH, with optima at 5.65 and 6.0, 2) temperature between 0 and 29 degrees C, with E alpha = 13 kcal mol-1, 3) D2O exchange, with a reduction in rate of 50% or more at the pH optima, and 4) the addition of ethylene glycol or glycerol, which significantly lowers the rate. The extremely narrow (delta vCO approximately 4 cm-1) infrared stretch bands at approximately 1964 and approximately 1959 cm-1 for liganded CO are only slightly affected by factors 1-4 or by changes in the oxidation state of metals other than the heme alpha 3 iron. These results indicate a stable, unusually immobile O2 reduction site well-isolated from the external medium, a characteristic expected to be important for oxidase function. Precise stereochemical positioning of hydrogen donors adjacent to O2 liganded to heme alpha 3 iron can be expected in order to achieve the optimization of the time/distance relationships required for enzyme catalysis. These findings support a novel mechanism of O2 reduction via a hydroperoxide intermediate within a reaction pocket that experiences little change in conformation during the hydrogen and electron transfer steps.  相似文献   

3.
F Guerlesquin  J C Sari  M Bruschi 《Biochemistry》1987,26(23):7438-7443
The complex formation between cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricans Norway was studied by microcalorimetric and pH-stat titration measurements. The stoichiometry of the complex was found to be one molecule of cytochrome c3 per monomer of ferredoxin I. The association constant determined at T = 283 K in tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer, 10(-2) M and pH 7.7, was KA = 1.3 X 10(6) M-1. Though the enthalpy (delta H = 19 +/- 1 kJ.mol-1) and the entropy (delta S = 183 J.K-1.mol-1) were positive and consistent with a hydrophobic process involved in the interaction, the analysis of ionic strength dependence exhibited an important electrostatic effect on the association. The use of both Tris-HCl and phosphate buffers during microcalorimetric experiments showed proton release at pH 6.6. The pH-stat study of proton release indicated that one of the charged groups involved in the interacting site underwent a pK shift from 7.35 to 6.05.  相似文献   

4.
The effects of altering the pH and electrical components of the membrane potential on the visible spectra and oxygen consumption rates of cytochrome oxidase vesicles were examined during steady-state respiration using cytochrome c as the substrate. Heme a was found to be 30-55% reduced in the presence of a membrane potential, becoming more reduced when the electrical gradient (delta psi) was abolished by valinomycin and more oxidized when the pH gradient (delta pH) was abolished by nigericin, with little increase (1.2-1.8-fold) in the rates of oxygen consumption in either case. When both gradients were eliminated, heme a reduction was close to initial levels, and activity was stimulated up to 8-fold. The magnitude of the changes in heme a reduction levels upon elimination of a gradient component was shown to be positively correlated with the magnitude of the respiratory control ratio of the vesicle preparation. Kinetic analysis of the dependence of oxidase activity on cytochrome c concentration indicated that changes in the Michaelis constant of the enzyme for its substrate are not a major factor in regulation by either delta pH or delta psi. These results suggest a dual mechanism for respiratory control in cytochrome oxidase vesicles under steady-state conditions, in which the electrical gradient predominantly affects electron transfer from cytochrome c to heme a, possibly by altering the reduction potential of heme a, while the pH gradient affects electron transfer from heme a (CuA) to heme a3 (CuB), possibly by a conformationally mediated change in the reduction potential of heme a3 or in the kinetics of the electron-transfer process.  相似文献   

5.
The cytochrome a and a3 sites in uninhibited, detergent-solubilized cytochrome c oxidase have been studied under a wide range of conditions using thin-layer spectroelectrochemistry. The observed absorbance changes at the alpha and Soret absorbance maxima have been used together to estimate the extents of reduction of cytochromes a and a3, using the absorbance properties of these cytochromes deduced from previous measurements employing ligand inhibition of cytochrome a3. The resulting Nernst plots, combined with the results of parallel studies on the carbon monoxide-inhibited enzyme (Ellis, W. R., Jr., Wang, H., Blair, D. F., Gray, H. B., and Chan, S. I. (1986) Biochemistry 25, 161-167; Wang, H., Blair, D. F., Ellis, W. R., Jr., Gray, H. B., and Chan, S. I. (1986) Biochemistry 25, 167-171), indicate that the cytochrome a site participates in anticooperative thermodynamic interactions which involve all three of the other metal sites in the protein. Using an analysis which resolves the intrinsic thermodynamic properties of the cytochromes from the effects of the intersite interactions, the pH, temperature, and ionic strength dependences of the cytochrome reduction potentials have been measured. The standard entropy of reduction of cytochrome a in the native enzyme is large and negative, in agreement with measurements on the carbon monoxide-inhibited enzyme. The reduction potential of cytochrome a is only moderately (less than -30 mV/pH unit) dependent upon pH, which implies that its reduction is linked to the uptake, on the average, of only about 0.5 protons at pH 7.0, and significantly less at the higher pH values relevant to the mitochondrial matrix. The thermodynamic properties of cytochrome a3 were found to be different in the two enzyme batches studied: in one batch, the cytochrome a3 reduction potential decreased steeply (about -56 mV/pH unit) with increasing pH, indicating stoichiometric (1 H+/e-) coupling of protonation to reduction. In the other batch, the cytochrome a3 potential was insensitive to pH below pH 7.5 and decreased at higher pH values in a manner suggesting coupling to an ionizable group with pKa near 7.8. The temperature dependence of the cytochrome a3 reduction potential indicates that its standard entropy of reduction is more positive than that of myoglobin, another high-spin metalloprotein heme, and significantly more positive than that of cytochrome a.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Rebinding of CO to reduced cytochrome c oxidase in plant mitochondria has been monitored optically at 590-630 nm after flash photolysis at low temperature from 160 to 200 K. (1) Under 100%-CO saturation, CO rebinding exhibits a four-step mechanism. The thermodynamic parameters of the first phase have been determined; its activation energy, Ea1, is 38.9 kJ.mol-1 and its enthalpy, delta H+/-1, and entropy, delta S+/-1, of activation are respectively 37.5 kJ.mol-1 and -75.8J.mol-1.K-1. (2) When the CO concentration is decreased to 0.2%, rebinding still occurs according to a four-step mechanism. The rate constant of the first phase is CO-concentration-independent. Under non-saturating conditions there is only one CO molecule per occupied site. The rebinding mechanism does not require additional CO molecules to be present in the haem pocket. (3) Dual-wavelength scanning experiments failed to detect optical forms correlated with the resolved phases. (4) Results are discussed with respect to previous work related to CO rebinding to mammalian cytochrome c oxidase and myoglobin.  相似文献   

7.
T Sakurai 《Biochemistry》1992,31(40):9844-9847
Rate constants have been determined for the electron-transfer reactions between reduced horse heart cytochrome c and resting Rhus vernicifera laccase as a function of pH, ionic strength, and temperature. The second-order rate constant for the oxidation of reduced cytochrome c was determined to be k = 125 M-1 s-1 at 25 degrees C in 0.2 M phosphate buffer at pH 6.0 with the activation parameters delta H++ = 16.2 kJ mol-1 and delta S++ = 28.9 J mol-1 K-1. The rate constants increased with decreasing buffer concentration, indicating that electron transfer from cytochrome c to laccase is favored by the local electrostatic interaction (ZAZB = -0.9 at pH 6 and -1.3 at pH 4.8) between the basic proteins with positive net charges. From the increase of the rate of electron transfer with decreasing pH, one of the driving forces of the reaction was suggested to be the difference in the redox potentials between the type 1 copper in laccase and the central iron in cytochrome c. Further, on addition of one hexametaphosphate anion per cytochrome c molecule, the rate of the electron transfer was increased, probably because the association of both proteins became more favorable.  相似文献   

8.
J Carey  O C Uhlenbeck 《Biochemistry》1983,22(11):2610-2615
A filter retention assay is used to examine the kinetic and equilibrium properties of the interaction between phage R17 coat protein and its 21-nucleotide RNA binding site. The kinetics of the reaction are consistent with the equilibrium association constant and indicate a diffusion-controlled reaction. The temperature dependence of Ka gives delta H = -19 kcal/mol. This large favorable delta H is partially offset by a delta S = -30 cal mol-1 deg-1 to give a delta G = -11 kcal/mol at 2 degrees C in 0.19 M salt. The binding reaction has a pH optimum centered around pH 8.5, but pH has no effect on delta H. While the interaction is insensitive to the type of monovalent cation, the affinity decreases with the lyotropic series among monovalent anions. The ionic strength dependence of Ka reveals that ionic contacts contribute to the interaction. Most of the binding free energy, however, is a result of nonelectrostatic interactions.  相似文献   

9.
The temperature dependence of the reduction potential of the CuA site in carbon monoxide inhibited cytochrome c oxidase has been measured with a spectroelectrochemical method adapted to the relatively weak near-infrared absorption of this copper ion. These measurements, together with parallel measurements on the 604-nm absorption due to Fea, indicate that an interaction between CuA and Fea causes the reduction potential for one of these sites to be decreased by approximately 40 mV upon reduction of the other. The temperature dependence of the CuA reduction potential indicates a relatively large and negative standard entropy of reduction of CuA (delta So' = -48.7 +/- 2.3 eu). Possible implications of the intersite redox interaction and the large standard entropy of reduction of the CuA site are discussed.  相似文献   

10.
Miksovská J  Gennis RB  Larsen RW 《FEBS letters》2005,579(14):3014-3018
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.  相似文献   

11.
Functional group interactions involved in the formation of the glutamate dehydrogenase-NADPH binary complex have been studied by three independent but complementary approaches: the pH dependence of the overall dissociation constant measured by an improved differential spectroscopic technique; the pH dependence of the enthalpy of complex formation measured by flow calorimetry; and the pH dependence of the number of protons released to, or taken up from, the solvent in the complex formation reaction, measured by titration. We conclude that the coenzyme binds to the enzyme through three distinguishable interactions: a pH-independent process involving the binding of the reduced nicotinamide ring; a relatively weak "proton-stabilizing" process, occurring at low pH involving the shift at a pK of 6.3 in the free enzyme to 7.0 in the enzyme-NADPH complex; and a stronger "proton-destabilizing" process, occurring at a higher pH involving a shift of a pK of 8.5 in the enzyme down to 6.9 in the enzyme-NADPH complex. The proton ionization of the free enzyme involved in this third interaction exhibits some unusual thermodynamic parameters, having delta Go = +11.5 +/- 0.1 kcal mol-1, delta Ho = +19 +/- 1 kcal mol-1, and delta So = +23 eu. We show here that this proton ionization step is directly related to and indeed constitutes the "implicit" shift in enzyme macrostates which we have shown to be responsible for the existence of large highly nonlinear delta Cpo effects in the formation of this complex [Fisher, H. F., Colen, A. H., & Medary, R. T. (1981) Nature (London) 292, 271-272].  相似文献   

12.
The reduction of horse heart ferricytochrome c by the tryptic fragment of bovine liver cytochrome b5 and its dimethyl ester heme (DME)-substituted derivative has been studied as a function of ionic strength, pH, and temperature under solution conditions where the reaction is bimolecular. The rate constant for ferricytochrome c reduction by native ferrocytochrome b5 is 1.8 (+/- 0.2) x 10(7) M-1 s-1 (25 degrees C) with delta H++ = 7.5 (+/- 0.2) kcal/mol and delta S++ = -0.3 (+/- 0.6) eu (pH 7.0, I = 0.348 M). Under the same solution conditions, the reduction of ferricytochrome c by DME-ferrocytochrome b5 proceeds with a rate constant of 1.7 (+/- 0.1) x 10(7) M-1 s-1 with delta H++ = 7.9 (+/- 0.4) kcal/mol and delta S++ = 1 (+/- 1) eu. The rate constants for both reactions are strongly dependent on ionic strength. A detailed electrostatic analysis of the proteins has been performed. Two relatively simple Brownian dynamics simulation models predict rate constants for the reaction between the two native proteins that demonstrate a dependence on ionic strength similar to that observed experimentally. In one of these models, the proteins are treated as spheres with reactive surface patches that are defined by a 5 degrees cone generated about the dipole vector calculated for each protein and aligned with the presumed electron-transfer site near the partially exposed heme edge. The second model replaces the reactive patch assumption with an exponential distance dependence for the probability of reaction that permits estimation of a value for the distance-dependence factor alpha. Calculations with this latter model in combination with the aligned dipole assumption provide a reasonable approximation to the observed ionic strength dependence for the reaction and are consistent with a value of alpha = 1.2 A-1.  相似文献   

13.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

14.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

15.
The control of electron flux through cytochrome oxidase.   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The electron flux through cytochrome oxidase is a linear function of the net thermodynamic force across the complex over a limited range of conditions. 2. Over a wide range of conditions the electron flux is a complicated function of the percentage reduction of the cytochrome c pool and of delta psi (at low values of delta pH). 3. We have estimated the elasticities of electron flux through cytochrome oxidase to delta Eh of the redox reaction catalysed by cytochrome oxidase (or to cyt c2+/cyt c3+) and to delta psi. The elasticities varied depending on the values of delta psi and of the percentage reduction of the cytochrome c pool. 4. At intermediate rates (which may correspond to those in vivo) the electron flux through cytochrome oxidase is controlled to about the same extent by delta psi and by delta Eh.  相似文献   

16.
Control of proteoliposomal cytochrome c oxidase: the partial reactions   总被引:2,自引:0,他引:2  
The steady-state spectroscopic behaviour and the turnover of cytochrome c oxidase incorporated into proteoliposomes have been investigated as functions of membrane potential and pH gradient. The respiration rate is almost linearly dependent on [cytochrome c2+] at high flux, but while the cytochrome a redox state is always dependent on the [cytochrome c2+] steady state, it reaches a maximum reduction level less than 100% in each case. The maximal aerobic steady-state reduction level of cytochrome a is highest in the presence of valinomycin and lowest in the presence of nigericin. The proportion of [cytochrome c2+] required to achieve 50% of maximal reduction of cytochrome a varies with the added ionophores; the apparent redox potential of cytochrome a is most positive in the fully decontrolled system (plus valinomycin and nigericin). At low levels of cytochrome a reduction, the rate of respiration is no longer a linear function of [cytochrome c2+], but is dependent upon the redox state of both cytochromes a and c. That is, proteoliposomal oxidase does not follow Smith-Conrad kinetics at low cytochrome c reduction levels, especially in the controlled states. The control of cytochrome oxidase turnover by delta pH and by delta psi can be explained either by an allosteric model or by a model with reversed electron transfer between the binuclear centre and cytochrome a. Other evidence suggests that the reversed electron transfer model may be the correct one.  相似文献   

17.
Absorbance-detected thermal denaturation studies of the C102T variant of Saccharomyces cerevisiae iso-1-ferricytochrome c were performed between pH 3 and 5. Thermal denaturation in this pH range is reversible, shows no concentration dependence, and is consistent with a 2-state model. Values for free energy (delta GD), enthalpy (delta HD), and entropy (delta SD) of denaturation were determined as functions of pH and temperature. The value of delta GD at 300 K, pH 4.6, is 5.1 +/- 0.3 kcal mol-1. The change in molar heat capacity upon denaturation (delta Cp), determined by the temperature dependence of delta HD as a function of pH (1.37 +/- 0.06 kcal mol-1 K-1), agrees with the value determined by differential scanning calorimetry. pH-dependent changes in the Soret region indicate that a group or groups in the heme environment of the denatured protein, probably 1 or both heme propionates, ionize with a pK near 4. The C102T variant exhibits both enthalpy and entropy convergence with a delta HD of 1.30 kcal mol-1 residue-1 at 373.6 K and a delta SD of 4.24 cal mol-1 K-1 residue-1 at 385.2 K. These values agree with those for other single-domain, globular proteins.  相似文献   

18.
J W Shriver  B D Sykes 《Biochemistry》1982,21(12):3022-3028
A new fluorine-containing reagent has been synthesized and used to specifically label the reactive sulfhydryl [sulfhydryl-1 (SH1)] of myosin subfragment 1 (S-1). The labeled S-1 (S-1-CF3) demonstrates activated calcium and magnesium adenosinetriphosphatase (ATPase) activities relative to S-1 and a lower potassium ethylenediaminetetraacetate (EDTA) ATPase activity. Maximal effect is obtained with the modification of one thiol per S-1. The 19F NMR spectrum of S-1 CF3 contains only one resonance with a line width of 110 Hz, which implies a rotational correlation time of 2.3 X 10(-7) s. The chemical shift of this resonance is sensitive to temperature, PH, ionic strength, and nucleotides bound in the active site. The temperature dependence of the chemical shift clearly indicates two limiting states for the S-1-CF3 with a highly temperature-dependent equilibrium between 5 and 40 degrees C. The low-temperature state appears to be identical with the state resulting from the binding of Mg.ADP or Mg.AMPPNP at 25 degree C. The energetics of the conformational change have been studied under various conditions. At pH 7 in 25 mM cacodylate, 0.1 M KCl, and 1 mM EDTA, delta H degree = 30 kcal/mol and delta S degree = 105 cal deg-1 mol-1. A decrease in pH to 6.5 results in an increased population of the low-temperature state with delta H degree = 31 kcal/mol and delta S degree = 107 cal deg-1 mol-1. Similarly, the low-temperature state is favored by low ionic strength. In 5.8 mM piperazine-N,N'bis(2-ethanesulfonic acid) and 1 mM EDTA (pH 7), delta H degree = 8 kcal/mol and delta S degree = 27 cal deg-1 mol-1. We have also obtained 19F NMR spectra of S-1-CF3 in D2O solution with 30% ethylene glycol at pH 7.1. Increasing concentrations of ethylene glycol progressively stabilize the high-temperature states.  相似文献   

19.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

20.
The oxidation of reduced cytochrome c oxidase by hydrogen peroxide was investigated with stopped-flow methods. It was reported by us previously (A.C.F. Gorren, H. Dekker and R. Wever (1986) Biochim. Biophys. Acta 852, 81-92) that at low H2O2 concentrations cytochrome a is oxidised simultaneously with cytochrome a3, but that at higher H2O2 concentrations the oxidation of cytochrome a is slower than that of cytochrome a3. We now report that for high peroxide concentrations (10-45 mM) the oxidation rate of cytochrome a increased linearly with the concentration of H2O2 (k = 700 M-1.S-1). Upon extrapolation to zero H2O2 concentration an intercept with a value of 16 s-1 (at 20 degrees C and pH 7.4) was found. A reaction sequence is described to explain these results; according to this model the rate constant (16 S-1) at zero H2O2 concentration represents the true value of the rate of electron transfer from cytochrome a to cytochrome a3 when the a3-CuB site is oxidised and unligated. However, when a complex of hydrogen peroxide with oxidised cytochrome a3 is formed, this rate is strongly enhanced. The slope (700 M-1.S-1) would then represent the rate of cytochrome a3(3+)-H2O2 complex formation. From experiments in which the pH was varied, we conclude that the reaction of H2O2 with cytochrome a3(2+) is independent of pH, whereas the electron-transfer rate from cytochrome a to cytochrome a3 gradually decreases with increasing pH. From the temperature dependence we could calculate values of 23 kJ.mol-1 and 45 kJ.mol-1 for the activation energies of the oxidations by H2O2 of cytochrome a3(2+) and cytochrome a2+, respectively. The similarity of the values that were obtained for cytochrome a oxidation both with H2O2 and with O2 as the electron acceptor suggests that the reactions share the same mechanism. In 2H2O the reactions studied decreased in rate. For the reaction of 2H2O2 with reduced cytochrome a3 in 2H2O, a small effect was found (15% decrease in rate constant). However, the internal electron-transfer rate from cytochrome a to cytochrome a3 decreased by 50%, Our results suggest that the internal electron transfer is associated with proton translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号